Accelerating Batch Active Learning Using Continual Learning Techniques
- URL: http://arxiv.org/abs/2305.06408v2
- Date: Tue, 12 Dec 2023 20:38:09 GMT
- Title: Accelerating Batch Active Learning Using Continual Learning Techniques
- Authors: Arnav Das, Gantavya Bhatt, Megh Bhalerao, Vianne Gao, Rui Yang, Jeff
Bilmes
- Abstract summary: A major problem with Active Learning (AL) is high training costs since models are typically retrained from scratch after every query round.
We develop a new class of techniques, circumventing this problem, by biasing further training towards previously labeled sets.
We conduct experiments across many data domains, including natural language, vision, medical imaging, and computational biology.
- Score: 5.514154947870141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major problem with Active Learning (AL) is high training costs since models
are typically retrained from scratch after every query round. We start by
demonstrating that standard AL on neural networks with warm starting fails,
both to accelerate training and to avoid catastrophic forgetting when using
fine-tuning over AL query rounds. We then develop a new class of techniques,
circumventing this problem, by biasing further training towards previously
labeled sets. We accomplish this by employing existing, and developing novel,
replay-based Continual Learning (CL) algorithms that are effective at quickly
learning the new without forgetting the old, especially when data comes from an
evolving distribution. We call this paradigm Continual Active Learning (CAL).
We show CAL achieves significant speedups using a plethora of replay schemes
that use model distillation and that select diverse, uncertain points from the
history. We conduct experiments across many data domains, including natural
language, vision, medical imaging, and computational biology, each with
different neural architectures and dataset sizes. CAL consistently provides a
3x reduction in training time, while retaining performance.
Related papers
- Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - How Efficient Are Today's Continual Learning Algorithms? [31.120016345185217]
Supervised continual learning involves updating a deep neural network (DNN) from an ever-growing stream of labeled data.
One of the major motivations behind continual learning is being able to efficiently update a network with new information, rather than retraining from scratch on the training dataset as it grows over time.
Here, we study recent methods for incremental class learning and illustrate that many are highly inefficient in terms of compute, memory, and storage.
arXiv Detail & Related papers (2023-03-29T18:52:10Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
We introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for deep neural networks (DNNs)
LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model, and the relearning phase, which emphasizes learning on generalizable features.
We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings.
arXiv Detail & Related papers (2023-03-18T16:45:54Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain.
Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
arXiv Detail & Related papers (2022-12-09T13:22:27Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - Learning Rate Curriculum [75.98230528486401]
We propose a novel curriculum learning approach termed Learning Rate Curriculum (LeRaC)
LeRaC uses a different learning rate for each layer of a neural network to create a data-agnostic curriculum during the initial training epochs.
We compare our approach with Curriculum by Smoothing (CBS), a state-of-the-art data-agnostic curriculum learning approach.
arXiv Detail & Related papers (2022-05-18T18:57:36Z) - Explain to Not Forget: Defending Against Catastrophic Forgetting with
XAI [10.374979214803805]
Catastrophic forgetting describes the phenomenon when a neural network completely forgets previous knowledge when given new information.
We propose a novel training algorithm called training by explaining in which we leverage Layer-wise Relevance propagation in order to retain the information a neural network has already learned in previous tasks when training on new data.
Our method not only successfully retains the knowledge of old tasks within the neural networks but does so more resource-efficiently than other state-of-the-art solutions.
arXiv Detail & Related papers (2022-05-04T08:00:49Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting.
We propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner.
Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings.
arXiv Detail & Related papers (2021-03-30T18:11:30Z) - Generative Feature Replay with Orthogonal Weight Modification for
Continual Learning [20.8966035274874]
generative replay is a promising strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting.
We propose to replay penultimate layer feature with a generative model; 2) leverage a self-supervised auxiliary task to further enhance the stability of feature.
Empirical results on several datasets show our method always achieves substantial improvement over powerful OWM.
arXiv Detail & Related papers (2020-05-07T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.