Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning
- URL: http://arxiv.org/abs/2407.10281v1
- Date: Sun, 14 Jul 2024 17:40:40 GMT
- Title: Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning
- Authors: Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, Yihong Gong,
- Abstract summary: We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
- Score: 22.13331870720021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of Rehearsal-Free Continual Learning (RFCL) aims to continually learn new knowledge while preventing forgetting of the old knowledge, without storing any old samples and prototypes. The latest methods leverage large-scale pre-trained models as the backbone and use key-query matching to generate trainable prompts to learn new knowledge. However, the domain gap between the pre-training dataset and the downstream datasets can easily lead to inaccuracies in key-query matching prompt selection when directly generating queries using the pre-trained model, which hampers learning new knowledge. Thus, in this paper, we propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA). It mainly comprises a parameter-extensible continual adapter layer (CAL) and a scaling and shifting (S&S) module in parallel with the pre-trained model. C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge, thereby avoiding matching errors and operational inefficiencies introduced by key-query matching. To reduce the gap, C-ADA employs an S&S module to transfer the feature space from pre-trained datasets to downstream datasets. Moreover, we propose an orthogonal loss to mitigate the interaction between old and new knowledge. Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method. Additionally, we conduct experiments on domain-incremental learning, surpassing the SOTA, and demonstrating the generality of our approach in different settings.
Related papers
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - COOLer: Class-Incremental Learning for Appearance-Based Multiple Object
Tracking [32.47215340215641]
This paper extends the scope of continual learning research to class-incremental learning for multiple object tracking (MOT)
Previous solutions for continual learning of object detectors do not address the data association stage of appearance-based trackers.
We introduce COOLer, a COntrastive- and cOntinual-Learning-based tracker, which incrementally learns to track new categories while preserving past knowledge.
arXiv Detail & Related papers (2023-10-04T17:49:48Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain.
Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
arXiv Detail & Related papers (2022-12-09T13:22:27Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Continual Class Incremental Learning for CT Thoracic Segmentation [36.45569352490318]
Deep learning organ segmentation approaches require large amounts of annotated training data, which is limited in supply due to reasons of confidentiality and the time required for expert manual annotation.
Being able to train models incrementally without having access to previously used data is desirable.
In this setting, a model learns a new task effectively, but loses performance on previously learned tasks.
The Learning without Forgetting (LwF) approach addresses this issue via replaying its own prediction for past tasks during model training.
We show that LwF can successfully retain knowledge on previous segmentations, however, its ability to learn a new class decreases with the
arXiv Detail & Related papers (2020-08-12T20:08:39Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.