Chain-of-Dictionary Prompting Elicits Translation in Large Language Models
- URL: http://arxiv.org/abs/2305.06575v6
- Date: Sat, 17 Aug 2024 14:31:42 GMT
- Title: Chain-of-Dictionary Prompting Elicits Translation in Large Language Models
- Authors: Hongyuan Lu, Haoran Yang, Haoyang Huang, Dongdong Zhang, Wai Lam, Furu Wei,
- Abstract summary: Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
- Score: 100.47154959254937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT) even when trained without parallel data. Yet, despite the fact that the amount of training data is gigantic, they still struggle with translating rare words, particularly for low-resource languages. Even worse, it is usually unrealistic to retrieve relevant demonstrations for in-context learning with low-resource languages on LLMs, which restricts the practical use of LLMs for translation -- how should we mitigate this problem? To this end, we present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities for LLMs. Extensive experiments indicate that augmenting ChatGPT with CoD elicits large gains by up to 13x chrF++ points for MNMT (3.08 to 42.63 for English to Serbian written in Cyrillic script) on FLORES-200 full devtest set. We further demonstrate the importance of chaining the multilingual dictionaries, as well as the superiority of CoD to few-shot demonstration for low-resource languages.
Related papers
- Learning-From-Mistakes Prompting for Indigenous Language Translation [3.7790255156708397]
This paper presents techniques to improve extremely low-resourced indigenous language translations.
Our approaches are grounded in the use of a datastore consisting of a limited number of parallel translation examples.
We harness the potential of LLMs and in-context learning techniques in such a setting for using LLMs as universal translators.
arXiv Detail & Related papers (2024-07-18T09:41:20Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages [2.53740603524637]
Machine translation models (MT) produce excellent multilingual representations, resulting in strong translation performance even for low-resource languages.
In this work, we get the best both worlds by integrating MT encoders directly into language backbones via sample-efficient self-distillation.
The resulting MT-LLMs preserve the inherent multilingual representational alignment from the MT encoder, allowing lower-resource languages to tap into the rich knowledge embedded in English-centric LLMs.
arXiv Detail & Related papers (2024-06-18T16:00:20Z) - Fine-Tuning Large Language Models to Translate: Will a Touch of Noisy Data in Misaligned Languages Suffice? [33.376648335299116]
Large language models (LLMs) display strong translation capability after being fine-tuned on as few as 32 parallel sentences.
LLMs with only English on the target side can lead to task misinterpretation, which hinders translation into non-English languages.
synthesized data in an under-represented language has a less pronounced effect.
arXiv Detail & Related papers (2024-04-22T12:21:12Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
We introduce the Multilingual Instruction-Tuning dataset (MITS), comprised of Alpaca-52K, Dolly-15K, and Vicuna Benchmark translations into 132 languages.
Secondly, we propose a new method called emphTaCo: Translation-Assisted Cross-Linguality, which utilizes translations in a chain-of-thought process to instruction-tune LLMs on new languages through a curriculum-learning process.
Our results indicate that the TaCo method impresses GPT-4 with an 82% score for a low-resource language in the Vicuna Benchmark dataset, doubling the performance in contrast to instruction tuning
arXiv Detail & Related papers (2023-11-17T06:55:32Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Translate to Disambiguate: Zero-shot Multilingual Word Sense
Disambiguation with Pretrained Language Models [67.19567060894563]
Pretrained Language Models (PLMs) learn rich cross-lingual knowledge and can be finetuned to perform well on diverse tasks.
We present a new study investigating how well PLMs capture cross-lingual word sense with Contextual Word-Level Translation (C-WLT)
We find that as the model size increases, PLMs encode more cross-lingual word sense knowledge and better use context to improve WLT performance.
arXiv Detail & Related papers (2023-04-26T19:55:52Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.