論文の概要: Neural Fine-Gray: Monotonic neural networks for competing risks
- arxiv url: http://arxiv.org/abs/2305.06703v1
- Date: Thu, 11 May 2023 10:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 15:21:05.426730
- Title: Neural Fine-Gray: Monotonic neural networks for competing risks
- Title(参考訳): ニューラルネットワーク:競合するリスクのためのモノトニックニューラルネットワーク
- Authors: Vincent Jeanselme, Chang Ho Yoon, Brian Tom, Jessica Barrett
- Abstract要約: 生存分析として知られる時間対イベントモデリングは、関心のある出来事を経験していない患者の検閲に対処するため、標準回帰とは異なる。
本稿では、制約付きモノトニックニューラルネットワークを用いて、各サバイバル分布をモデル化する。
このソリューションの有効性は、1つの合成データセットと3つの医療データセットで示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-to-event modelling, known as survival analysis, differs from standard
regression as it addresses censoring in patients who do not experience the
event of interest. Despite competitive performances in tackling this problem,
machine learning methods often ignore other competing risks that preclude the
event of interest. This practice biases the survival estimation. Extensions to
address this challenge often rely on parametric assumptions or numerical
estimations leading to sub-optimal survival approximations. This paper
leverages constrained monotonic neural networks to model each competing
survival distribution. This modelling choice ensures the exact likelihood
maximisation at a reduced computational cost by using automatic
differentiation. The effectiveness of the solution is demonstrated on one
synthetic and three medical datasets. Finally, we discuss the implications of
considering competing risks when developing risk scores for medical practice.
- Abstract(参考訳): 生存分析として知られる時間対イベントモデリングは、関心のある出来事を経験していない患者の検閲に対処するため、標準回帰とは異なる。
この問題に取り組む際の競争的パフォーマンスにもかかわらず、機械学習の手法は、関心事を引き起こす他の競合リスクをしばしば無視する。
この慣行は生存推定に偏っている。
この課題に対処する拡張は、しばしば準最適生存近似につながるパラメトリック仮定や数値推定に依存する。
本稿では、制約付きモノトニックニューラルネットワークを用いて、各サバイバル分布をモデル化する。
このモデル選択は、自動微分を用いることで、計算コストの削減による正確な極大化を保証する。
このソリューションの有効性は、1つの合成データセットと3つの医療データセットで示される。
最後に,医療用リスクスコアの開発において,競合するリスクを検討することの意義について考察する。
関連論文リスト
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - ICTSurF: Implicit Continuous-Time Survival Functions with Neural Networks [0.0]
本研究はImplicit Continuous-Time Survival Function (ICTSurF)を紹介する。
ICTSurFは連続生存モデルに基づいて構築され、暗黙の表現を通して生存分布を構築する。
本手法は,ニューラルネットワークアーキテクチャに依存しない連続時間空間における入力を受信し,継続時間空間における生存確率を生成する。
論文 参考訳(メタデータ) (2023-12-10T08:29:00Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
我々は、リスクスコアと機械学習モデルの両方の最高の特徴を組み合わせた、新たなリスクアセスメント方法論を作成するつもりです。
提案手法は、標準LRと同一の試験結果を得たが、より優れた解釈性とパーソナライゼーションを提供する。
個人予測の信頼性推定は誤分類率と大きな相関を示した。
論文 参考訳(メタデータ) (2021-10-15T19:33:46Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
集中治療室(ICU)における死亡リスクの動的評価は、患者を階層化し、治療効果を知らせたり、早期警戒システムの一部として機能したりすることができる。
現状の確率モデルと競合する結果を示すとともに,2~9倍のトレーニング時間を大幅に短縮する。
論文 参考訳(メタデータ) (2020-11-02T10:13:59Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
生存予測のための新しいフレキシブルな手法,DeepHazardを提案する。
我々のアプローチは、時間内に添加物としてのみ制限される、広範囲の継続的なハザード形態に適合している。
数値的な例では,我々の手法は,C-インデックス計量を用いて評価された予測能力において,既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T21:01:49Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。