Adaptive variational simulation for open quantum systems
- URL: http://arxiv.org/abs/2305.06915v2
- Date: Tue, 6 Feb 2024 20:04:01 GMT
- Title: Adaptive variational simulation for open quantum systems
- Authors: Huo Chen, Niladri Gomes, Siyuan Niu and Wibe Albert de Jong
- Abstract summary: We present an adaptive variational quantum algorithm for simulating open quantum system dynamics.
Our results demonstrate that near-future quantum processors are capable of simulating open quantum systems.
- Score: 0.25602836891933073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emerging quantum hardware provides new possibilities for quantum simulation.
While much of the research has focused on simulating closed quantum systems,
the real-world quantum systems are mostly open. Therefore, it is essential to
develop quantum algorithms that can effectively simulate open quantum systems.
Here we present an adaptive variational quantum algorithm for simulating open
quantum system dynamics described by the Lindblad equation. The algorithm is
designed to build resource-efficient ansatze through the dynamical addition of
operators by maintaining the simulation accuracy. We validate the effectiveness
of our algorithm on both noiseless simulators and IBM quantum processors and
observe good quantitative and qualitative agreement with the exact solution. We
also investigate the scaling of the required resources with system size and
accuracy and find polynomial behavior. Our results demonstrate that near-future
quantum processors are capable of simulating open quantum systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - QuantumSkynet: A High-Dimensional Quantum Computing Simulator [0.0]
Current implementations of quantum computing simulators are limited to two-level quantum systems.
Recent advances in high-dimensional quantum computing systems have demonstrated the viability of working with multi-level superposition and entanglement.
We introduce QuantumSkynet, a novel high-dimensional cloud-based quantum computing simulator.
arXiv Detail & Related papers (2021-06-30T06:28:18Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
We propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation.
The algorithm is used to extract the phase diagram of a system with no prior physical knowledge.
We show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
arXiv Detail & Related papers (2021-06-15T06:54:47Z) - Digital quantum simulation of open quantum systems using quantum
imaginary time evolution [0.0]
We report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation.
Our work advances efforts to simulate the dynamics of open quantum systems on quantum hardware.
arXiv Detail & Related papers (2021-04-15T23:48:06Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.