Unsupervised Recognition of Unknown Objects for Open-World Object
Detection
- URL: http://arxiv.org/abs/2308.16527v1
- Date: Thu, 31 Aug 2023 08:17:29 GMT
- Title: Unsupervised Recognition of Unknown Objects for Open-World Object
Detection
- Authors: Ruohuan Fang, Guansong Pang, Lei Zhou, Xiao Bai, Jin Zheng
- Abstract summary: Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario.
Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns.
This paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects.
- Score: 28.787586991713535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-World Object Detection (OWOD) extends object detection problem to a
realistic and dynamic scenario, where a detection model is required to be
capable of detecting both known and unknown objects and incrementally learning
newly introduced knowledge. Current OWOD models, such as ORE and OW-DETR, focus
on pseudo-labeling regions with high objectness scores as unknowns, whose
performance relies heavily on the supervision of known objects. While they can
detect the unknowns that exhibit similar features to the known objects, they
suffer from a severe label bias problem that they tend to detect all regions
(including unknown object regions) that are dissimilar to the known objects as
part of the background. To eliminate the label bias, this paper proposes a
novel approach that learns an unsupervised discriminative model to recognize
true unknown objects from raw pseudo labels generated by unsupervised region
proposal methods. The resulting model can be further refined by a
classification-free self-training method which iteratively extends pseudo
unknown objects to the unlabeled regions. Experimental results show that our
method 1) significantly outperforms the prior SOTA in detecting unknown objects
while maintaining competitive performance of detecting known object classes on
the MS COCO dataset, and 2) achieves better generalization ability on the LVIS
and Objects365 datasets.
Related papers
- Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis [15.748043194987075]
This work aims to bridge the gap by leveraging an open-world object detector and an OoD detector via virtual outlier.
Our approach empowers our overall object detector architecture to learn anomaly-aware feature representations without relying on class labels.
Our method establishes state-of-the-art performance on object-level anomaly detection, achieving an average recall score improvement of over 5.4% for natural images.
arXiv Detail & Related papers (2024-07-22T16:16:38Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection [17.766859354014663]
Open-world object detection requires a model trained from data on known objects to detect both known and unknown objects.
We propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer.
We show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.
arXiv Detail & Related papers (2023-01-05T09:11:16Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
We propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR.
We fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint.
Our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
arXiv Detail & Related papers (2022-12-06T13:39:30Z) - Detecting the unknown in Object Detection [20.84221126313118]
We propose a novel training strategy, called UNKAD, able to predict unknown objects without requiring any annotation.
UNKAD first identifies and pseudo-labels unknown objects and then uses the pseudo-annotations to train an additional unknown class.
While UNKAD can directly detect unknown objects, we further combine it with previous unknown detection techniques, showing that it improves their performance at no costs.
arXiv Detail & Related papers (2022-08-24T16:27:38Z) - More Practical Scenario of Open-set Object Detection: Open at Category
Level and Closed at Super-category Level [23.98839374194848]
Open-set object detection (OSOD) has recently attracted considerable attention.
We first point out that the scenario of OSOD considered in recent studies, which considers an unlimited variety of unknown objects, has a fundamental issue.
This issue leads to difficulty with the evaluation of methods' performance on unknown object detection.
arXiv Detail & Related papers (2022-07-20T09:28:51Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
We introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection.
OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring.
Our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall.
arXiv Detail & Related papers (2021-12-02T18:58:30Z) - Towards Open World Object Detection [68.79678648726416]
ORE: Open World Object Detector is based on contrastive clustering and energy based unknown identification.
We find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting.
arXiv Detail & Related papers (2021-03-03T18:58:18Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.