Ergodicity breaking from Rydberg clusters in a driven-dissipative
many-body system
- URL: http://arxiv.org/abs/2305.07032v2
- Date: Mon, 15 May 2023 10:43:20 GMT
- Title: Ergodicity breaking from Rydberg clusters in a driven-dissipative
many-body system
- Authors: Dong-Sheng Ding and Zhengyang Bai and Zong-Kai Liu and Bao-Sen Shi and
Guang-Can Guo and Weibin Li and C. Stuart. Adams
- Abstract summary: We report experimental evidence of a transition from ergodic towards ergodic breaking dynamics in driven-dissipative Rydberg atomic gases.
The broken symmetry in the limit cycle is a direct manifestation of many-body interactions, which is verified by tuning atomic densities.
- Score: 2.3551989288556774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is challenging to probe ergodicity breaking trends of a quantum many-body
system when dissipation inevitably damages quantum coherence originated from
coherent coupling and dispersive two-body interactions. Rydberg atoms provide a
test bed to detect emergent exotic many-body phases and non-ergodic dynamics
where the strong Rydberg atom interaction competes with and overtakes
dissipative effects even at room temperature. Here we report experimental
evidence of a transition from ergodic towards ergodic breaking dynamics in
driven-dissipative Rydberg atomic gases. The broken ergodicity is featured by
the long-time phase oscillation, which is attributed from the formation of
Rydberg excitation clusters in limit cycle phases. The broken symmetry in the
limit cycle is a direct manifestation of many-body interactions, which is
verified by tuning atomic densities in our experiment. The reported result
reveals that Rydberg many-body systems are a promising candidate to probe
ergodicity breaking dynamics, such as limit cycles, and enable the benchmark of
non-equilibrium phase transition.
Related papers
- Exceptional point and hysteresis trajectories in cold Rydberg atomic gases [33.90303571473806]
Long-range interactions induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics.
Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases.
arXiv Detail & Related papers (2024-08-06T11:35:06Z) - Emergent Continuous Time Crystal in Dissipative Quantum Spin System without Driving [1.641189223782504]
Time crystal, a nonequilibrium phenomenon extending spontaneous symmetry breaking into the temporal dimension, holds fundamental significance in quantum many-body physics.
We numerically identify the emergence of novel nonstationary oscillatory states by analyzing the spin dynamics.
This study provides many insights into the intricate interplay between the dissipation-induced spin downwards and anisotropic-interaction-induced spin precession or spin fluctuation.
arXiv Detail & Related papers (2024-03-13T12:40:32Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Self-organized Limit Cycles in Red-detuned Atom-cavity Systems [4.4886210896619945]
Recent experimental advances in the field of cold-atom cavity QED provide a powerful tool for exploring non-equilibrium correlated quantum phenomena.
We present the dynamical phase diagram of a driven Bose-Einstein condensate coupled with the light field of a cavity, with a transverse driving field red-detuned from atomic resonance.
We identify regions in parameter space showing dynamical instabilities in the form of limit cycles, which evolve into chaotic behavior in the strong driving limit.
arXiv Detail & Related papers (2022-12-08T08:43:19Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Many-body radiative decay in strongly interacting Rydberg ensembles [0.0]
When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces.
We show that these interactions have also a significant impact on dissipative effects caused by the inevitable coupling of Rydberg atoms to the surrounding electromagnetic field.
We discuss how this collective dissipation - stemming from a mechanism different from the much studied super- and sub-radiance - accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.
arXiv Detail & Related papers (2022-06-06T18:30:52Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Designer Magnetism in High Entropy Oxides [41.74498230885008]
Disorder can have a dominating influence on correlated and quantum materials.
In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, and spin dynamics.
We show that high entropy oxides present an unexplored route to designing quantum materials.
arXiv Detail & Related papers (2021-04-12T15:21:48Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.