Fairness in Machine Learning meets with Equity in Healthcare
- URL: http://arxiv.org/abs/2305.07041v2
- Date: Mon, 14 Aug 2023 14:47:34 GMT
- Title: Fairness in Machine Learning meets with Equity in Healthcare
- Authors: Shaina Raza, Parisa Osivand Pour, Syed Raza Bashir
- Abstract summary: This study proposes an artificial intelligence framework for identifying and mitigating biases in data and models.
A case study is presented to demonstrate how systematic biases in data can lead to amplified biases in model predictions.
Future research aims to test and validate the proposed ML framework in real-world clinical settings to evaluate its impact on promoting health equity.
- Score: 6.842248432925292
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the growing utilization of machine learning in healthcare, there is
increasing potential to enhance healthcare outcomes. However, this also brings
the risk of perpetuating biases in data and model design that can harm certain
demographic groups based on factors such as age, gender, and race. This study
proposes an artificial intelligence framework, grounded in software engineering
principles, for identifying and mitigating biases in data and models while
ensuring fairness in healthcare settings. A case study is presented to
demonstrate how systematic biases in data can lead to amplified biases in model
predictions, and machine learning methods are suggested to prevent such biases.
Future research aims to test and validate the proposed ML framework in
real-world clinical settings to evaluate its impact on promoting health equity.
Related papers
- Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data [2.7436483977171333]
This study aims to investigate the effectiveness of using the backbone of Foundation Models as an embedding extractor.
We propose utilizing these groups in different stages of bias mitigation, including pre-processing, in-processing, and evaluation.
arXiv Detail & Related papers (2024-08-28T20:35:38Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Detecting algorithmic bias in medical-AI models using trees [7.939586935057782]
This paper presents an innovative framework for detecting areas of algorithmic bias in medical-AI decision support systems.
Our approach efficiently identifies potential biases in medical-AI models, specifically in the context of sepsis prediction.
arXiv Detail & Related papers (2023-12-05T18:47:34Z) - Towards a Transportable Causal Network Model Based on Observational
Healthcare Data [1.333879175460266]
We propose a novel approach that combines selection diagrams, missingness graphs, causal discovery and prior knowledge into a single graphical model.
We learn this model from data comprising two different cohorts of patients.
The resulting causal network model is validated by expert clinicians in terms of risk assessment, accuracy and explainability.
arXiv Detail & Related papers (2023-11-13T13:23:31Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - Connecting Fairness in Machine Learning with Public Health Equity [0.0]
biases in data and model design can result in disparities for certain protected groups and amplify existing inequalities in healthcare.
This study summarizes seminal literature on ML fairness and presents a framework for identifying and mitigating biases in the data and model.
Case studies suggest how the framework can be used to prevent these biases and highlight the need for fair and equitable ML models in public health.
arXiv Detail & Related papers (2023-04-08T10:21:49Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.