How Quantum is the Resonance Behavior in Vibrational Polariton
Chemistry?
- URL: http://arxiv.org/abs/2305.07296v1
- Date: Fri, 12 May 2023 08:00:38 GMT
- Title: How Quantum is the Resonance Behavior in Vibrational Polariton
Chemistry?
- Authors: Marit R. Fiechter, Johan E. Runeson, Joseph E. Lawrence, Jeremy O.
Richardson
- Abstract summary: Recently, Lindoy et al. reported the first instance of a sharp resonant effect in the cavity-modified rate simulated in a model system using exact quantum dynamics.
We investigate the same model system with a different method, ring-polymer molecular dynamics ( RPMD), which captures quantum statistics but treats dynamics classically.
We find that RPMD does not reproduce this sharp resonant feature at the well frequency, and we discuss the implications of this finding for future studies in vibrational polariton chemistry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent experiments in polariton chemistry have demonstrated that reaction
rates can be modified by vibrational strong coupling to an optical cavity mode.
Importantly, this modification only occurs when the frequency of the cavity
mode is tuned to closely match a molecular vibrational frequency. This sharp
resonance behavior has proved difficult to capture theoretically. Only
recently, Lindoy et al. reported the first instance of a sharp resonant effect
in the cavity-modified rate simulated in a model system using exact quantum
dynamics. We investigate the same model system with a different method,
ring-polymer molecular dynamics (RPMD), which captures quantum statistics but
treats dynamics classically. We find that RPMD does not reproduce this sharp
resonant feature at the well frequency, and we discuss the implications of this
finding for future studies in vibrational polariton chemistry.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Flipping electric dipole in the vibrational wave packet dynamics of
carbon monoxide [0.0]
Recently Rydberg atom-ion bound states have been observed using a high resolution ion microscope.
We investigate whether a similar behavior can also occur for ground state diatomic molecules.
arXiv Detail & Related papers (2024-03-06T21:32:22Z) - Quantum Dynamics of Vibrational Polariton Chemistry [0.0]
We employ an exact quantum mechanical simulation technique to investigate a model of cavity-modified chemical reactions in the condensed phase.
The model contains the coupling of the reaction coordinate to a generic solvent, cavity coupling to either the reaction coordinate or a non-reactive mode, and the coupling of the cavity to lossy modes.
arXiv Detail & Related papers (2022-10-11T15:45:01Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum Effects in Chemical Reactions under Polaritonic Vibrational
Strong Coupling [0.0]
We study the coherent nature of adiabatic reactions and derive the cavity-induced changes in eigen, zero-point-energy, and quantum tunneling.
The calculation is further supported by perturbative analysis of polariton normal modes.
arXiv Detail & Related papers (2021-09-28T13:04:53Z) - Cavity-modified unimolecular dissociation reactions via intramolecular
vibrational energy redistribution [0.0]
We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with unimolecular dissociation reaction rates.
In particular, when the cavity is initially empty, the dissociation rate decreases, while when the cavity is initially hotter than the molecule, the cavity can instead accelerate the reaction rate.
arXiv Detail & Related papers (2021-09-09T14:37:39Z) - Disorder enhanced vibrational entanglement and dynamics in polaritonic
chemistry [0.0]
Theory often neglects quantum entanglement between nuclear and electro-photonic degrees of freedom.
We show that disorder can strongly enhance the build-up of this entanglement on short timescales.
We simulate the exact quantum dynamics of more than 100 molecules.
arXiv Detail & Related papers (2021-07-13T13:06:52Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.