論文の概要: Model-based Programming: Redefining the Atomic Unit of Programming for
the Deep Learning Era
- arxiv url: http://arxiv.org/abs/2305.07341v1
- Date: Fri, 12 May 2023 09:38:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 13:39:23.870996
- Title: Model-based Programming: Redefining the Atomic Unit of Programming for
the Deep Learning Era
- Title(参考訳): モデルに基づくプログラミング: ディープラーニング時代のプログラミングの原子単位を再定義する
- Authors: Meng Zheng
- Abstract要約: 本稿では,モデルベースプログラミングの概念を提案し,新しいプログラミング言語であるM言語を提案する。
M言語はモデルを基本的な計算単位として扱い、開発者がより重要なタスクに集中できるようにする。
- 参考スコア(独自算出の注目度): 2.712076884994214
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces and explores a new programming paradigm, Model-based
Programming, designed to address the challenges inherent in applying deep
learning models to real-world applications. Despite recent significant
successes of deep learning models across a range of tasks, their deployment in
real business scenarios remains fraught with difficulties, such as complex
model training, large computational resource requirements, and integration
issues with existing programming languages. To ameliorate these challenges, we
propose the concept of 'Model-based Programming' and present a novel
programming language - M Language, tailored to a prospective model-centered
programming paradigm. M Language treats models as basic computational units,
enabling developers to concentrate more on crucial tasks such as model loading,
fine-tuning, evaluation, and deployment, thereby enhancing the efficiency of
creating deep learning applications. We posit that this innovative programming
paradigm will stimulate the extensive application and advancement of deep
learning technology and provide a robust foundation for a model-driven future.
- Abstract(参考訳): 本稿では,ディープラーニングモデルを現実世界のアプリケーションに適用する際の課題に対処するために設計された,新しいプログラミングパラダイムであるモデルベースプログラミングを紹介し,検討する。
さまざまなタスクにわたるディープラーニングモデルの成功にもかかわらず、実際のビジネスシナリオへのデプロイには、複雑なモデルトレーニング、大規模な計算リソース要件、既存のプログラミング言語との統合の問題などといった困難が伴う。
これらの課題を改善するため,我々は「モデルベースプログラミング」の概念を提案し,モデル中心型プログラミングパラダイムに合わせた新しいプログラミング言語「m言語」を提案する。
M言語はモデルを基本的な計算単位として扱い、開発者はモデルローディング、微調整、評価、デプロイメントといった重要なタスクに集中でき、それによってディープラーニングアプリケーションを作成する効率が向上する。
この革新的なプログラミングパラダイムは、ディープラーニング技術の広範な適用と進歩を刺激し、モデル駆動型未来のための堅牢な基盤を提供すると仮定する。
関連論文リスト
- On the Utility of Domain Modeling Assistance with Large Language Models [2.874893537471256]
本稿では,大規模言語モデル(LLM)とドメインモデリング支援のための数発のプロンプト学習を利用した新しいアプローチの有用性を評価する。
このアプローチの目的は、不足するドメイン固有のデータセット上で、AIベースの補完モデルの広範なトレーニングの必要性を克服することである。
論文 参考訳(メタデータ) (2024-10-16T13:55:34Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions [7.103987978402038]
我々はMixture-of-Instructions (MoI)と呼ばれる新しいテクニックを紹介する。
MoIは、言語モデルのアライメント効率を高めるために、多様なシステムプロンプトと組み合わせた命令結合戦略を採用している。
提案手法はオープンソースQwen-7B-chatモデルに適用され,Qwen-SFT-MoIの開発が完了した。
論文 参考訳(メタデータ) (2024-04-29T03:58:12Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - MindLLM: Pre-training Lightweight Large Language Model from Scratch,
Evaluations and Domain Applications [46.337078949637345]
我々は、スクラッチから訓練されたバイリンガル軽量な大規模言語モデルの新しいシリーズであるMindLLMを紹介する。
大規模なモデル開発で得られた経験の詳細な説明が与えられ、プロセスのすべてのステップをカバーする。
MindLLMは、いくつかの公開ベンチマークにおいて、他のオープンソースの大規模モデルのパフォーマンスと一貫して一致または上回っている。
論文 参考訳(メタデータ) (2023-10-24T12:22:34Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
本稿では,MDD とABMS プラットフォームの利用状況と開発ミスについて比較する。
その結果、MDD4ABMSはNetLogoと類似した設計品質のシミュレーションを開発するのに、より少ない労力を必要とすることがわかった。
論文 参考訳(メタデータ) (2020-06-15T23:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。