WEDGE: A multi-weather autonomous driving dataset built from generative
vision-language models
- URL: http://arxiv.org/abs/2305.07528v1
- Date: Fri, 12 May 2023 14:42:47 GMT
- Title: WEDGE: A multi-weather autonomous driving dataset built from generative
vision-language models
- Authors: Aboli Marathe, Deva Ramanan, Rahee Walambe, Ketan Kotecha
- Abstract summary: We introduce WEDGE: a synthetic dataset generated with a vision-language generative model via prompting.
WEDGE consists of 3360 images in 16 extreme weather conditions manually annotated with 16513 bounding boxes.
We establish baseline performance for classification and detection with 53.87% test accuracy and 45.41 mAP.
- Score: 51.61662672912017
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The open road poses many challenges to autonomous perception, including poor
visibility from extreme weather conditions. Models trained on good-weather
datasets frequently fail at detection in these out-of-distribution settings. To
aid adversarial robustness in perception, we introduce WEDGE (WEather images by
DALL-E GEneration): a synthetic dataset generated with a vision-language
generative model via prompting. WEDGE consists of 3360 images in 16 extreme
weather conditions manually annotated with 16513 bounding boxes, supporting
research in the tasks of weather classification and 2D object detection. We
have analyzed WEDGE from research standpoints, verifying its effectiveness for
extreme-weather autonomous perception. We establish baseline performance for
classification and detection with 53.87% test accuracy and 45.41 mAP. Most
importantly, WEDGE can be used to fine-tune state-of-the-art detectors,
improving SOTA performance on real-world weather benchmarks (such as DAWN) by
4.48 AP for well-generated classes like trucks. WEDGE has been collected under
OpenAI's terms of use and is released for public use under the CC BY-NC-SA 4.0
license. The repository for this work and dataset is available at
https://infernolia.github.io/WEDGE.
Related papers
- From Data to Insights: A Covariate Analysis of the IARPA BRIAR Dataset for Multimodal Biometric Recognition Algorithms at Altitude and Range [13.42292577384284]
This paper focuses on fused whole body biometrics performance in the IARPA BRIAR dataset, specifically focusing on UAV platforms, elevated positions, and up to 1000 meters.
The dataset includes outdoor videos compared with indoor images and controlled gait recordings.
arXiv Detail & Related papers (2024-09-03T00:58:50Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
We present a new dataset to enable robust autonomous driving via a novel data collection process.
The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS.
We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects.
arXiv Detail & Related papers (2022-08-01T22:55:32Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS) [0.5156484100374058]
Object detection in thermal infrared spectrum provides more reliable data source in low-lighting conditions and different weather conditions.
This paper is about exploring and adapting state-of-the-art object and vision framework on thermal vision with seven distinct classes for advanced driver-assistance systems (ADAS)
The trained network variants on public datasets are validated on test data with three different test approaches.
The efficacy of trained networks is tested on locally gathered novel test-data captured with an uncooled LWIR prototype thermal camera.
arXiv Detail & Related papers (2021-09-20T21:38:55Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Multi-View Radar Semantic Segmentation [3.2093811507874768]
Automotive radars are low-cost active sensors that measure properties of surrounding objects.
They are seldom used for scene understanding due to the size and complexity of radar raw data.
We propose several novel architectures, and their associated losses, which analyse multiple "views" of the range-angle-Doppler radar tensor to segment it semantically.
arXiv Detail & Related papers (2021-03-30T09:56:41Z) - Speak2Label: Using Domain Knowledge for Creating a Large Scale Driver
Gaze Zone Estimation Dataset [55.391532084304494]
Driver Gaze in the Wild dataset contains 586 recordings, captured during different times of the day including evenings.
Driver Gaze in the Wild dataset contains 338 subjects with an age range of 18-63 years.
arXiv Detail & Related papers (2020-04-13T14:47:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.