Commissioning An All-Sky Infrared Camera Array for Detection Of Airborne Objects
- URL: http://arxiv.org/abs/2411.07956v1
- Date: Tue, 12 Nov 2024 17:31:51 GMT
- Title: Commissioning An All-Sky Infrared Camera Array for Detection Of Airborne Objects
- Authors: Laura Dominé, Ankit Biswas, Richard Cloete, Alex Delacroix, Andriy Fedorenko, Lucas Jacaruso, Ezra Kelderman, Eric Keto, Sarah Little, Abraham Loeb, Eric Masson, Mike Prior, Forrest Schultz, Matthew Szenher, Wes Watters, Abby White,
- Abstract summary: The Galileo Project is designing, building, and commissioning a multi-modal ground-based observatory to continuously monitor the sky.
One of the key instruments is an all-sky infrared camera array using eight uncooled long-wave infrared FLIR Boson 640 cameras.
We report acceptance rates (e.g. viewable airplanes that are recorded) and detection efficiencies (e.g. recorded airplanes which are successfully detected) for a variety of weather conditions.
A toy outlier search focused on large sinuosity of the 2-D reconstructed trajectories flags about 16% of trajectories as outliers.
- Score: 0.11703603440337004
- License:
- Abstract: To date there is little publicly available scientific data on Unidentified Aerial Phenomena (UAP) whose properties and kinematics purportedly reside outside the performance envelope of known phenomena. To address this deficiency, the Galileo Project is designing, building, and commissioning a multi-modal ground-based observatory to continuously monitor the sky and conduct a rigorous long-term aerial census of all aerial phenomena, including natural and human-made. One of the key instruments is an all-sky infrared camera array using eight uncooled long-wave infrared FLIR Boson 640 cameras. Their calibration includes a novel extrinsic calibration method using airplane positions from Automatic Dependent Surveillance-Broadcast (ADS-B) data. We establish a first baseline for the system performance over five months of field operation, using a real-world dataset derived from ADS-B data, synthetic 3-D trajectories, and a hand-labelled real-world dataset. We report acceptance rates (e.g. viewable airplanes that are recorded) and detection efficiencies (e.g. recorded airplanes which are successfully detected) for a variety of weather conditions, range and aircraft size. We reconstruct $\sim$500,000 trajectories of aerial objects from this commissioning period. A toy outlier search focused on large sinuosity of the 2-D reconstructed trajectories flags about 16% of trajectories as outliers. After manual review, 144 trajectories remain ambiguous: they are likely mundane objects but cannot be elucidated at this stage of development without distance and kinematics estimation or other sensor modalities. Our observed count of ambiguous outliers combined with systematic uncertainties yields an upper limit of 18,271 outliers count for the five-month interval at a 95% confidence level. This likelihood-based method to evaluate significance is applicable to all of our future outlier searches.
Related papers
- Small Aerial Target Detection for Airborne Infrared Detection Systems using LightGBM and Trajectory Constraints [10.00266996583567]
A simple and effective small aerial target detection method for airborne infrared detection system is proposed in this article.
Experiments on public datasets demonstrate that the proposed method performs better than other existing methods.
To the best of our knowledge, this dataset has the largest data scale and richest scene types within this field.
arXiv Detail & Related papers (2024-07-01T13:33:40Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
We present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives.
MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes.
This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets.
arXiv Detail & Related papers (2023-12-07T18:59:14Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - SpaceYOLO: A Human-Inspired Model for Real-time, On-board Spacecraft
Feature Detection [0.0]
Real-time, automated spacecraft feature recognition is needed to pinpoint the locations of collision hazards.
New algorithm SpaceYOLO fuses a state-of-the-art object detector YOLOv5 with a separate neural network based on human-inspired decision processes.
Performance in autonomous spacecraft detection of SpaceYOLO is compared to ordinary YOLOv5 in hardware-in-the-loop experiments.
arXiv Detail & Related papers (2023-02-02T02:11:39Z) - AirTrack: Onboard Deep Learning Framework for Long-Range Aircraft
Detection and Tracking [3.3773749296727535]
AirTrack is a real-time vision-only detect and tracking framework that respects the size, weight, and power constraints of sUAS systems.
We show that AirTrack outperforms state-of-the art baselines on the Amazon Airborne Object Tracking (AOT)
Empirical evaluations show that our system has a probability of track of more than 95% up to a range of 700m.
arXiv Detail & Related papers (2022-09-26T16:58:00Z) - Analysis and Adaptation of YOLOv4 for Object Detection in Aerial Images [0.0]
Our work shows the adaptation of the popular YOLOv4 framework for predicting the objects and their locations in aerial images.
The trained model resulted in a mean average precision (mAP) of 45.64% with an inference speed reaching 8.7 FPS on the Tesla K80 GPU.
A comparative study with several contemporary aerial object detectors proved that YOLOv4 performed better, implying a more suitable detection algorithm to incorporate on aerial platforms.
arXiv Detail & Related papers (2022-03-18T23:51:09Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Planetary UAV localization based on Multi-modal Registration with
Pre-existing Digital Terrain Model [0.5156484100374058]
We propose a multi-modal registration based SLAM algorithm, which estimates the location of a planet UAV using a nadir view camera on the UAV.
To overcome the scale and appearance difference between on-board UAV images and pre-installed digital terrain model, a theoretical model is proposed to prove that topographic features of UAV image and DEM can be correlated in frequency domain via cross power spectrum.
To test the robustness and effectiveness of the proposed localization algorithm, a new cross-source drone-based localization dataset for planetary exploration is proposed.
arXiv Detail & Related papers (2021-06-24T02:54:01Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.