論文の概要: Measuring Surprise in the Wild
- arxiv url: http://arxiv.org/abs/2305.07733v1
- Date: Fri, 12 May 2023 19:11:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 19:55:25.712679
- Title: Measuring Surprise in the Wild
- Title(参考訳): 野生でのサプライズの測定
- Authors: Azadeh Dinparastdjadid, Isaac Supeene, Johan Engstrom
- Abstract要約: 認知科学と神経科学に根ざした驚きの計算モデルと、最先端の機械が学習した生成モデルを組み合わせる。
学習した生成モデルを用いた驚くべき行動のモデリングは、交通安全を超えてあらゆる動的な現実環境に一般化できる新しい概念である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantitative measurement of how and when we experience surprise has
mostly remained limited to laboratory studies, and its extension to
naturalistic settings has been challenging. Here we demonstrate, for the first
time, how computational models of surprise rooted in cognitive science and
neuroscience combined with state-of-the-art machine learned generative models
can be used to detect surprising human behavior in complex, dynamic
environments like road traffic. In traffic safety, such models can support the
identification of traffic conflicts, modeling of road user response time, and
driving behavior evaluation for both human and autonomous drivers. We also
present novel approaches to quantify surprise and use naturalistic driving
scenarios to demonstrate a number of advantages over existing surprise measures
from the literature. Modeling surprising behavior using learned generative
models is a novel concept that can be generalized beyond traffic safety to any
dynamic real-world environment.
- Abstract(参考訳): 驚きを体験した際の定量的な測定はほとんど実験室に限られており、自然主義的な設定への拡張は困難である。
ここでは,認知科学と神経科学に根ざしたサプライズモデルと最先端の機械学習生成モデルを組み合わせて,道路交通などの複雑な動的環境における驚きの人間の行動を検出する手法を初めて示す。
交通安全においては、交通紛争の特定、道路利用者の応答時間のモデル化、人間と自律運転者の運転行動評価を支援することができる。
また,サプライズを定量化し,自然主義的な運転シナリオを用いて既存のサプライズ対策に対する多くの利点を示す新しい手法を提案する。
学習した生成モデルを用いた驚くべき行動のモデリングは、交通安全を超えた動的現実環境に一般化できる新しい概念である。
関連論文リスト
- RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Using Models Based on Cognitive Theory to Predict Human Behavior in
Traffic: A Case Study [4.705182901389292]
本研究では,ギャップ受容シナリオにおける人間の行動予測のための認知的確証のある新しいモデルの有用性について検討する。
我々は、このモデルが確立されたデータ駆動予測モデルと競合したり、さらに優れていることを示す。
論文 参考訳(メタデータ) (2023-05-24T14:27:00Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
アクティブ推論フレームワーク(英: active inference framework、AIF)は、現代の神経科学を基盤とした、有望な新しい計算フレームワークである。
本研究では,ヒトの視覚行動指導において,AIFが期待する役割を捉える能力をテストする。
本稿では,多次元世界状態から自由エネルギーの一次元分布にマッピングする先行関数の新たな定式化について述べる。
論文 参考訳(メタデータ) (2022-11-16T20:00:38Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
人力車と自動車の両方を含むハイブリッド輸送システムのシミュレーションプラットフォームを提案する。
我々は、人間の運転タスクを分解し、大規模な交通シナリオをシミュレートするためのモジュラーアプローチを提供する。
我々は、大きな駆動データセットを分析し、異なる駆動特性を最もよく記述する表現的パラメータを抽出する。
論文 参考訳(メタデータ) (2022-08-10T19:59:16Z) - Passive and Active Learning of Driver Behavior from Electric Vehicles [2.9623902973073375]
運転者の振る舞いをモデル化することは、電気自動車のエネルギー消費の予測など、自動車業界にいくつかの利点をもたらす。
機械学習手法はドライバーの行動分類に広く使われており、いくつかの課題をもたらす可能性がある。
これには、長期のウィンドウ上のシーケンスモデリングや、高価なアノテーションによるラベル付きデータの欠如が含まれる。
論文 参考訳(メタデータ) (2022-03-04T08:18:02Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
逆強化学習問題として交通シミュレーションを定式化する。
動的ロバストシミュレーション学習のためのパラメータ共有逆強化学習モデルを提案する。
提案モデルでは,実世界の車両の軌道を模倣し,同時に報酬関数を復元することができる。
論文 参考訳(メタデータ) (2021-05-20T07:26:34Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
自然トラフィックデータからドライバの好みを推定するためにモデルをどのように反転させることができるかを示す。
我々のアプローチの際立った利点は、計算負担を大幅に削減することである。
論文 参考訳(メタデータ) (2021-05-05T01:20:03Z) - Social NCE: Contrastive Learning of Socially-aware Motion
Representations [87.82126838588279]
実験結果から, 提案手法は最近の軌道予測, 行動クローニング, 強化学習アルゴリズムの衝突速度を劇的に低減することがわかった。
本手法は,ニューラルネットワークの設計に関する仮定をほとんど示さないため,神経運動モデルのロバスト性を促進する汎用的手法として使用できる。
論文 参考訳(メタデータ) (2020-12-21T22:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。