論文の概要: A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction
- arxiv url: http://arxiv.org/abs/2305.07854v2
- Date: Thu, 18 May 2023 06:03:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 19:07:00.009727
- Title: A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction
- Title(参考訳): マッチング特徴抽出を用いた異種エッジデバイスのためのフェデレーション学習型産業健康診断
- Authors: Anushiya Arunan, Yan Qin, Xiaoli Li, and Chau Yuen
- Abstract要約: 本稿では,特徴類似性マッチングパラメータアグリゲーションアルゴリズムを用いたFL型健康予後モデルを提案する。
提案手法は, 健康状態推定と生活寿命推定において, 44.5%, 39.3%の精度向上を達成できることを示す。
- 参考スコア(独自算出の注目度): 16.337207503536384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven industrial health prognostics require rich training data to
develop accurate and reliable predictive models. However, stringent data
privacy laws and the abundance of edge industrial data necessitate
decentralized data utilization. Thus, the industrial health prognostics field
is well suited to significantly benefit from federated learning (FL), a
decentralized and privacy-preserving learning technique. However, FL-based
health prognostics tasks have hardly been investigated due to the complexities
of meaningfully aggregating model parameters trained from heterogeneous data to
form a high performing federated model. Specifically, data heterogeneity among
edge devices, stemming from dissimilar degradation mechanisms and unequal
dataset sizes, poses a critical statistical challenge for developing accurate
federated models. We propose a pioneering FL-based health prognostic model with
a feature similarity-matched parameter aggregation algorithm to
discriminatingly learn from heterogeneous edge data. The algorithm searches
across the heterogeneous locally trained models and matches neurons with
probabilistically similar feature extraction functions first, before
selectively averaging them to form the federated model parameters. As the
algorithm only averages similar neurons, as opposed to conventional naive
averaging of coordinate-wise neurons, the distinct feature extractors of local
models are carried over with less dilution to the resultant federated model.
Using both cyclic degradation data of Li-ion batteries and non-cyclic data of
turbofan engines, we demonstrate that the proposed method yields accuracy
improvements as high as 44.5\% and 39.3\% for state-of-health estimation and
remaining useful life estimation, respectively.
- Abstract(参考訳): データ駆動型産業健康予測は、正確で信頼性の高い予測モデルを開発するために豊富な訓練データを必要とする。
しかし、厳格なデータプライバシー法とエッジ産業データの豊富さは、分散データ利用を必要とする。
したがって,産業保健分野は,分散型・プライバシー保全型学習手法であるフェデレーション学習(fl)から著しく利益を得るのに適している。
しかしながら,ヘテロジニアスデータから学習したモデルパラメータを有意義に集約し,ハイパフォーマンスなフェデレーションモデルを形成するという複雑さから,flベースの健康予測タスクはほとんど研究されていない。
特に、異質な分解機構と不等なデータセットサイズに由来するエッジデバイス間のデータの不均一性は、正確なフェデレーションモデルを開発する上で重要な統計的課題となる。
特徴類似性マッチングパラメータアグリゲーションアルゴリズムを用いて、異種エッジデータから識別的に学習するFLベースの健康予後モデルを提案する。
このアルゴリズムは局所的に訓練された不均一なモデルを探索し、まずニューロンと確率論的に類似した特徴抽出関数をマッチングし、それらを選択的に平均化し、フェデレートされたモデルパラメータを形成する。
このアルゴリズムは、従来の座標方向ニューロンの平均化とは対照的に、類似したニューロンを平均するだけであるため、局所モデルの異なる特徴抽出器は、結果のフェデレーションモデルへの希釈を少なくする。
ターボファンエンジンのLiイオン電池の循環劣化データと非循環劣化データの両方を用いて, 提案手法は, それぞれ44.5\%, 39.3\%の精度向上を達成できることを示した。
関連論文リスト
- Can EEG resting state data benefit data-driven approaches for motor-imagery decoding? [4.870701423888026]
本稿では,デコードモデルの一般化を促進するための特徴結合手法を提案する。
我々は、EEG信号分類のための標準的な畳み込みニューラルネットワークであるEEGNetモデルと、静止状態のEEGデータから導かれる機能的接続手段を組み合わせる。
ユーザ内のシナリオに対する平均精度の改善が観察されているが、ランダムなデータ結合と比較して、ユーザ間のシナリオ間の結合はメリットがない。
論文 参考訳(メタデータ) (2024-10-28T07:18:32Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL)は、ネットワークデバイス上での機械学習モデルの分散トレーニングのためのプライバシ保護メカニズムを提供する。
本稿では,FLにおけるデータ不完全性問題に対処する新しいアプローチであるFLIGANを提案する。
本手法はFLのプライバシ要件に則り,プロセス内の実際のデータを共有せずに合成データをフェデレートした方法で生成する。
論文 参考訳(メタデータ) (2024-03-25T16:49:38Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - A Generative Modeling Framework for Inferring Families of Biomechanical
Constitutive Laws in Data-Sparse Regimes [0.15658704610960567]
本稿では,データスパース体制における関係の家族を効率的に推定する新しい手法を提案する。
機能的先行概念に着想を得て,ニューラル演算子をジェネレータとし,完全接続ネットワークを敵判別器として組み込んだ生成ネットワーク(GAN)を開発した。
論文 参考訳(メタデータ) (2023-05-04T22:07:27Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Hybrid Feature- and Similarity-Based Models for Prediction and
Interpretation using Large-Scale Observational Data [0.0]
教師付き学習のためのハイブリッド機能と類似性に基づくモデルを提案する。
提案したハイブリッドモデルは,カーネル部分の疎性誘導ペナルティを伴う凸最適化に適合する。
我々は,本モデルと,合成データを用いた特徴的および類似性に基づくアプローチとを比較し,孤独感や社会的孤立のリスクを予測するためにEHRデータを用いた。
論文 参考訳(メタデータ) (2022-04-12T20:37:03Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。