論文の概要: Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning
- arxiv url: http://arxiv.org/abs/2305.08014v3
- Date: Mon, 19 Feb 2024 23:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 21:29:31.685835
- Title: Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning
- Title(参考訳): 軽量オールコンベネト・トランスファー学習による表面emgに基づくセッション間/サブジェクション認識
- Authors: Md. Rabiul Islam, Daniel Massicotte, Philippe Y. Massicotte, and
Wei-Ping Zhu
- Abstract要約: 低解像度の瞬時HD-sEMG画像を用いたジェスチャー認識は、より流動的で自然な筋肉-コンピュータインターフェースを開発するための新たな道を開く。
セッション間とオブジェクト間シナリオ間のデータのばらつきは、大きな課題を示します。
既存のアプローチでは、非常に大きく複雑なConvNetまたは2SRNNベースのドメイン適応手法を使用して、これらのセッション間およびオブジェクト間データのばらつきに起因する分散シフトを近似した。
我々は、軽量なAll-ConvNetとTransfer Learning(TL)を利用した、セッション間およびオブジェクト間ジェスチャー認識の強化のための軽量All-ConvNet+TLモデルを提案する。
- 参考スコア(独自算出の注目度): 17.535392299244066
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Gesture recognition using low-resolution instantaneous HD-sEMG images opens
up new avenues for the development of more fluid and natural muscle-computer
interfaces. However, the data variability between inter-session and
inter-subject scenarios presents a great challenge. The existing approaches
employed very large and complex deep ConvNet or 2SRNN-based domain adaptation
methods to approximate the distribution shift caused by these inter-session and
inter-subject data variability. Hence, these methods also require learning over
millions of training parameters and a large pre-trained and target domain
dataset in both the pre-training and adaptation stages. As a result, it makes
high-end resource-bounded and computationally very expensive for deployment in
real-time applications. To overcome this problem, we propose a lightweight
All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer
learning (TL) for the enhancement of inter-session and inter-subject gesture
recognition performance. The All-ConvNet+TL model consists solely of
convolutional layers, a simple yet efficient framework for learning invariant
and discriminative representations to address the distribution shifts caused by
inter-session and inter-subject data variability. Experiments on four datasets
demonstrate that our proposed methods outperform the most complex existing
approaches by a large margin and achieve state-of-the-art results on
inter-session and inter-subject scenarios and perform on par or competitively
on intra-session gesture recognition. These performance gaps increase even more
when a tiny amount (e.g., a single trial) of data is available on the target
domain for adaptation. These outstanding experimental results provide evidence
that the current state-of-the-art models may be overparameterized for
sEMG-based inter-session and inter-subject gesture recognition tasks.
- Abstract(参考訳): 低解像度のHD-sEMG画像を用いたジェスチャー認識は、より流動的で自然な筋肉-コンピュータインターフェースを開発するための新たな道を開く。
しかし、セッション間およびサブジェクト間シナリオ間のデータ変動は大きな課題となる。
既存のアプローチでは、非常に大きく複雑なConvNetまたは2SRNNベースのドメイン適応手法を使用して、これらのセッション間およびオブジェクト間データのばらつきに起因する分散シフトを近似した。
したがって、これらの方法は、何百万ものトレーニングパラメータと、事前トレーニングと適応段階の両方で、トレーニング済みおよびターゲットドメインデータセットを学習する必要がある。
その結果、リアルタイムアプリケーションへのデプロイには、ハイエンドのリソースバウンドと計算コストが非常にかかる。
本稿では,この問題を解決するために,軽量なall-convnet and transfer learning(tl)を活用した軽量なall-convnet+tlモデルを提案する。
all-convnet+tlモデルは畳み込み層のみで構成されており、セッション間およびサブジェクト間データ可変性によって引き起こされる分散シフトに対処するための不変および判別表現を学習するための単純かつ効率的なフレームワークである。
4つのデータセットに対する実験により,提案手法は,既存の手法よりも大きなマージンで優れており,セッション間およびオブジェクト間シナリオにおける最先端の結果が得られ,セッション内ジェスチャ認識において同等あるいは競合的に実行されることを示した。
これらのパフォーマンスギャップは、少数のデータ(例えば単一のトライアル)がターゲットドメインで利用可能になったときにさらに増加する。
これらの顕著な実験結果は、現在の最先端モデルが、sEMGベースのセッション間およびオブジェクト間ジェスチャー認識タスクに対して過度にパラメータ化されていることを示す。
関連論文リスト
- Heterogeneous Domain Adaptation and Equipment Matching: DANN-based
Alignment with Cyclic Supervision (DBACS) [3.4519649635864584]
この研究は、サイクリック・スーパービジョン(DBACS)アプローチによるドメイン適応ニューラルネットワークを導入している。
DBACSはドメイン適応によるモデル一般化の問題、特に異種データに対処する。
この作業には、サブスペースアライメントや、異種表現を扱う多視点学習も含まれる。
論文 参考訳(メタデータ) (2023-01-03T10:56:25Z) - RAIS: Robust and Accurate Interactive Segmentation via Continual
Learning [16.382862088005087]
本稿では,対話型セグメンテーションと継続的学習のための堅牢で正確なアーキテクチャであるRAISを提案する。
テストセットを効率的に学習するために,グローバルパラメータとローカルパラメータを更新するための新しい最適化手法を提案する。
また,リモートセンシングと医用画像のデータセットにおけるロバスト性も示す。
論文 参考訳(メタデータ) (2022-10-20T03:05:44Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。