AI for Agile development: a Meta-Analysis
- URL: http://arxiv.org/abs/2305.08093v1
- Date: Sun, 14 May 2023 08:10:40 GMT
- Title: AI for Agile development: a Meta-Analysis
- Authors: Beatriz Cabrero-Daniel
- Abstract summary: This study explores the benefits and challenges of integrating Artificial Intelligence with Agile software development methodologies.
The review helped identify critical challenges, such as the need for specialised socio-technical expertise.
Further research is needed to better understand its impact on processes and practitioners, and to address the indirect challenges associated with its implementation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study explores the benefits and challenges of integrating Artificial
Intelligence with Agile software development methodologies, focusing on
improving continuous integration and delivery. A systematic literature review
and longitudinal meta-analysis of the retrieved studies was conducted to
analyse the role of Artificial Intelligence and it's future applications within
Agile software development. The review helped identify critical challenges,
such as the need for specialised socio-technical expertise. While Artificial
Intelligence holds promise for improved software development practices, further
research is needed to better understand its impact on processes and
practitioners, and to address the indirect challenges associated with its
implementation.
Related papers
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
This study investigates the impact of integrating DevSecOps and Generative Artificial Intelligence on software delivery performance within technology firms.
The findings reveal significant enhancements in R&D efficiency, improved source code management, and heightened software quality and security.
arXiv Detail & Related papers (2024-11-04T16:44:01Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
The study of in-IDE Human-AI Experience is critical in understanding how these AI tools are transforming the software development process.
We conducted a literature review to study the current state of in-IDE Human-AI Experience research.
arXiv Detail & Related papers (2024-01-19T14:55:51Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems.
A significant challenge in AI development is the effective operationalization of D&I principles.
This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI)
arXiv Detail & Related papers (2023-12-11T02:44:39Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
PerfDetectiveAI, a conceptual framework for performance gap analysis and suggestion in software applications is introduced in this research.
Modern machine learning (ML) and artificial intelligence (AI) techniques are used in PerfDetectiveAI to monitor performance measurements and identify areas of underperformance in software applications.
arXiv Detail & Related papers (2023-06-11T02:53:04Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.