AI's Impact on Traditional Software Development
- URL: http://arxiv.org/abs/2502.18476v1
- Date: Wed, 05 Feb 2025 14:58:09 GMT
- Title: AI's Impact on Traditional Software Development
- Authors: Bhanuprakash Madupati,
- Abstract summary: The application of artificial intelligence (AI) has brought key shifts in conventional tactical software development.<n>This paper examines the technical aspect of integrating AI into prior traditional software development life cycle methodologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The application of artificial intelligence (AI) has brought key shifts in conventional tactical software development, including code generation, testing and debugging, and deployment. Waterfall and Agile development approaches, which have been used for a long time, also widely employ manual and well-planned steps. However, with the help of automated tools and models such as OpenAI Codex and GPT-4, many aspects of the Software Development Life Cycle (SDLC) have been made possible. This paper examines the technical aspect of integrating AI into prior traditional software development life cycle methodologies, emphasizing code automation, intelligent testing frameworks, AI-based debugging, and continuous integration and deployment pipelines. The analysis is also based on the advantages of utilizing AI for optimizations in efficiency, accuracy, and development speed alongside issues like over-dependence on AI, ethical questions, and technical constraints. Based on the case and example given in this paper, it is clearly shown that the self-improvement of AI in software development makes the process more dynamic, autonomous, and optimized.
Related papers
- Challenges and Paths Towards AI for Software Engineering [55.95365538122656]
We discuss progress in AI for software engineering in threefold manner.
First, we provide a structured taxonomy of concrete tasks in AI for software engineering.
Second, we outline several key bottlenecks that limit current approaches.
arXiv Detail & Related papers (2025-03-28T17:17:57Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
We propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types.<n>Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development.
arXiv Detail & Related papers (2025-01-15T12:53:49Z) - Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering [0.0]
The paper provides an overview of the current state of AI-augmented software engineering and develops a corresponding taxonomy, AI4SE.<n>A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches in the context of software development.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
This study investigates the adoption, impact, and security considerations of AI-empowered tools in the software development process.
Our findings reveal widespread adoption of AI tools across various stages of software development.
arXiv Detail & Related papers (2024-09-20T09:17:10Z) - Future of Artificial Intelligence in Agile Software Development [0.0]
AI can assist software development managers, software testers, and other team members by leveraging LLMs, GenAI models, and AI agents.
AI has the potential to increase efficiency and reduce the risks encountered by the project management team.
arXiv Detail & Related papers (2024-08-01T16:49:50Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.