Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction
- URL: http://arxiv.org/abs/2305.08144v4
- Date: Thu, 13 Jun 2024 11:51:37 GMT
- Title: Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction
- Authors: Danyang Zhang, Zhennan Shen, Rui Xie, Situo Zhang, Tianbao Xie, Zihan Zhao, Siyuan Chen, Lu Chen, Hongshen Xu, Ruisheng Cao, Kai Yu,
- Abstract summary: We introduce Mobile-Env, a comprehensive toolkit tailored for creating GUI benchmarks in the Android mobile environment.
We collect an open-world task set across various real-world apps and a fixed world set, WikiHow, which captures a significant amount of dynamic online contents.
Our findings reveal that even advanced models struggle with tasks that are relatively simple for humans.
- Score: 28.53259866617677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Graphical User Interface (GUI) is pivotal for human interaction with the digital world, enabling efficient device control and the completion of complex tasks. Recent progress in Large Language Models (LLMs) and Vision Language Models (VLMs) offers the chance to create advanced GUI agents. To ensure their effectiveness, there's a pressing need for qualified benchmarks that provide trustworthy and reproducible evaluations -- a challenge current benchmarks often fail to address. To tackle this issue, we introduce Mobile-Env, a comprehensive toolkit tailored for creating GUI benchmarks in the Android mobile environment. Mobile-Env offers an isolated and controllable setting for reliable evaluations, and accommodates intermediate instructions and rewards to reflect real-world usage more naturally. Utilizing Mobile-Env, we collect an open-world task set across various real-world apps and a fixed world set, WikiHow, which captures a significant amount of dynamic online contents for fully controllable and reproducible evaluation. We conduct comprehensive evaluations of LLM agents using these benchmarks. Our findings reveal that even advanced models (e.g., GPT-4V and LLaMA-3) struggle with tasks that are relatively simple for humans. This highlights a crucial gap in current models and underscores the importance of developing more capable foundation models and more effective GUI agent frameworks.
Related papers
- GUI Agents with Foundation Models: A Comprehensive Survey [52.991688542729385]
This survey consolidates recent research on (M)LLM-based GUI agents.
We highlight key innovations in data, frameworks, and applications.
We hope this paper will inspire further developments in the field of (M)LLM-based GUI agents.
arXiv Detail & Related papers (2024-11-07T17:28:10Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [55.14033256706175]
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information.
We introduce AutoBench-V, an automated framework for serving evaluation on demand.
Through an extensive evaluation of seven popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - AutoGLM: Autonomous Foundation Agents for GUIs [51.276965515952]
We present AutoGLM, a new series in the ChatGLM family, designed to serve as foundation agents for autonomous control of digital devices through Graphical User Interfaces (GUIs)
We have developed AutoGLM as a practical foundation agent system for real-world GUI interactions.
Our evaluations demonstrate AutoGLM's effectiveness across multiple domains.
arXiv Detail & Related papers (2024-10-28T17:05:10Z) - EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data [15.801018643716437]
This paper aims to enhance the GUI understanding and interacting capabilities of large vision-language models (LVLMs) through a data-driven approach.
We propose EDGE, a general data synthesis framework that automatically generates large-scale, multi-granularity training data from webpages across the Web.
Our approach significantly reduces the dependence on manual annotations, empowering researchers to harness the vast public resources available on the Web to advance their work.
arXiv Detail & Related papers (2024-10-25T10:46:17Z) - SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents.
SPA-Bench offers three key contributions: A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines.
A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption.
arXiv Detail & Related papers (2024-10-19T17:28:48Z) - Benchmarking Mobile Device Control Agents across Diverse Configurations [19.01954948183538]
B-MoCA is a benchmark for evaluating and developing mobile device control agents.
We benchmark diverse agents, including agents employing large language models (LLMs) or multi-modal LLMs.
While these agents demonstrate proficiency in executing straightforward tasks, their poor performance on complex tasks highlights significant opportunities for future research to improve effectiveness.
arXiv Detail & Related papers (2024-04-25T14:56:32Z) - ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation [30.693616802332745]
This paper presents a novel benchmark, AssistGUI, to evaluate whether models are capable of manipulating the mouse and keyboard on the Windows platform in response to user-requested tasks.
We propose an advanced Actor-Critic framework, which incorporates a sophisticated GUI driven by an AI agent and adept at handling lengthy procedural tasks.
arXiv Detail & Related papers (2023-12-20T15:28:38Z) - General Object Foundation Model for Images and Videos at Scale [99.2806103051613]
We present GLEE, an object-level foundation model for locating and identifying objects in images and videos.
GLEE accomplishes detection, segmentation, tracking, grounding, and identification of arbitrary objects in the open world scenario.
We employ an image encoder, text encoder, and visual prompter to handle multi-modal inputs, enabling to simultaneously solve various object-centric downstream tasks.
arXiv Detail & Related papers (2023-12-14T17:26:00Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.