Combining geolocation and height estimation of objects from street level
imagery
- URL: http://arxiv.org/abs/2305.08232v1
- Date: Sun, 14 May 2023 19:40:02 GMT
- Title: Combining geolocation and height estimation of objects from street level
imagery
- Authors: Matej Ulicny, Vladimir A. Krylov, Julie Connelly, and Rozenn Dahyot
- Abstract summary: We propose a pipeline for combined multi-class object geolocation and height estimation from street level RGB imagery.
The proposed technique uses image metadata along with coordinates of objects detected in the image plane as found by a custom-trained Convolutional Neural Network.
- Score: 5.887281983256354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a pipeline for combined multi-class object geolocation and height
estimation from street level RGB imagery, which is considered as a single
available input data modality. Our solution is formulated via Markov Random
Field optimization with deterministic output. The proposed technique uses image
metadata along with coordinates of objects detected in the image plane as found
by a custom-trained Convolutional Neural Network. Computing the object height
using our methodology, in addition to object geolocation, has negligible effect
on the overall computational cost. Accuracy is demonstrated experimentally for
water drains and road signs on which we achieve average elevation estimation
error lower than 20cm.
Related papers
- RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - Construction of Object Boundaries for the Autopilotof a Surface Robot
from Satellite Imagesusing Computer Vision Methods [101.18253437732933]
A method for detecting water objects on satellite maps is proposed.
An algorithm for calculating the GPS coordinates of the contours is created.
The proposed algorithm allows saving the result in a format suitable for the surface robot autopilot module.
arXiv Detail & Related papers (2022-12-05T12:07:40Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - Visual Cross-View Metric Localization with Dense Uncertainty Estimates [11.76638109321532]
This work addresses visual cross-view metric localization for outdoor robotics.
Given a ground-level color image and a satellite patch that contains the local surroundings, the task is to identify the location of the ground camera within the satellite patch.
We devise a novel network architecture with denser satellite descriptors, similarity matching at the bottleneck, and a dense spatial distribution as output to capture multi-modal localization ambiguities.
arXiv Detail & Related papers (2022-08-17T20:12:23Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Category-Level Metric Scale Object Shape and Pose Estimation [73.92460712829188]
We propose a framework that jointly estimates a metric scale shape and pose from a single RGB image.
We validated our method on both synthetic and real-world datasets to evaluate category-level object pose and shape.
arXiv Detail & Related papers (2021-09-01T12:16:46Z) - Scale Normalized Image Pyramids with AutoFocus for Object Detection [75.71320993452372]
A scale normalized image pyramid (SNIP) is generated that, like human vision, only attends to objects within a fixed size range at different scales.
We propose an efficient spatial sub-sampling scheme which only operates on fixed-size sub-regions likely to contain objects.
The resulting algorithm is referred to as AutoFocus and results in a 2.5-5 times speed-up during inference when used with SNIP.
arXiv Detail & Related papers (2021-02-10T18:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.