Dissipation induced Liouville-Majorana modes in open quantum system
- URL: http://arxiv.org/abs/2305.08311v1
- Date: Mon, 15 May 2023 02:38:57 GMT
- Title: Dissipation induced Liouville-Majorana modes in open quantum system
- Authors: Xing-Shuo Xu, Xiang-Fa Zhou, Guang-Can Guo, and Zheng-Wei Zhou
- Abstract summary: In open systems, topological edge states quickly lose coherence and cannot be used in topological quantum computation and quantum memory.
Here we show that for dissipative quantum spin (or fermionic) systems, topologically non-Hermitian Liouville-Majorana edge modes (LMEMs) can survive in the extended Liouville-Fock space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In open systems, topological edge states quickly lose coherence and cannot be
used in topological quantum computation and quantum memory. Here we show that
for dissipative quantum spin (or fermionic) systems, topologically
non-Hermitian Liouville-Majorana edge modes (LMEMs) can survive in the extended
Liouville-Fock space, which is beyond the scope of topological modes defined in
usual Hermitian system. By vectorizing the Lindblad equation of the system
using the third quantization, we prove that it reduces to a series of
non-Hermitian Kitaev chains in the extended Liouville-Fock space, and
topologically LMEMs are protected due to its internal symmetry. Furthermore, we
provide an explicit method for detecting these modes and prove that the purity
of the density matrix characterizes the long-range correlation of LMEMs. The
work opens new avenues of searching for novel stable topological states in open
systems induced by quantum jumps.
Related papers
- Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Exact Hidden Markovian Dynamics in Quantum Circuits [1.2845309023495566]
We show that the influence of the time-evolved global system on a finite subsystem can be analytically described by sequential, time-local quantum channels.
The realization of exact hidden Markovian property is facilitated by a solvable condition on the underlying two-site gates in the quantum circuit.
arXiv Detail & Related papers (2024-03-21T19:42:21Z) - Detecting Quantum Anomalies in Open Systems [0.0]
We introduce a novel and experimentally feasible approach to detect quantum anomalies in open systems.
We numerically demonstrate the unavoidable singular behavior of $exp(rmitheta Sz_rm tot)$ for half-integer spin chains.
arXiv Detail & Related papers (2023-12-18T13:29:07Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Adiabatic Shortcuts Completion in Quantum Field Theory: Annihilation of
Created Particles [44.99833362998488]
We investigate the completion of a nonadiabatic evolution into a shortcut to adiabaticity for a quantum field confined within a one-dimensional cavity containing two movable mirrors.
We achieve a smooth extension of the Moore functions that implements the STA.
We draw attention to the existence of a comparable problem within nonrelativistic quantum mechanics.
arXiv Detail & Related papers (2023-08-25T14:19:21Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.