論文の概要: SAT-Based PAC Learning of Description Logic Concepts
- arxiv url: http://arxiv.org/abs/2305.08511v1
- Date: Mon, 15 May 2023 10:20:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 15:02:37.295736
- Title: SAT-Based PAC Learning of Description Logic Concepts
- Title(参考訳): SATを用いた記述論理概念のPAC学習
- Authors: Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz
- Abstract要約: 本稿では,記述の存在下で論理概念を学習するためのスキームとして有界フィッティングを提案する。
本稿では,SATソルバをベースとした記述論理 $mathcalELHr$ のバウンドフィッティングを実装したシステム SPELL を提案し,その性能を最先端の学習者と比較する。
- 参考スコア(独自算出の注目度): 18.851061569487616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose bounded fitting as a scheme for learning description logic
concepts in the presence of ontologies. A main advantage is that the resulting
learning algorithms come with theoretical guarantees regarding their
generalization to unseen examples in the sense of PAC learning. We prove that,
in contrast, several other natural learning algorithms fail to provide such
guarantees. As a further contribution, we present the system SPELL which
efficiently implements bounded fitting for the description logic
$\mathcal{ELH}^r$ based on a SAT solver, and compare its performance to a
state-of-the-art learner.
- Abstract(参考訳): オントロジーの存在下で記述論理の概念を学ぶためのスキームとして有界適合を提案する。
主な利点は、結果の学習アルゴリズムは、PAC学習の意味で見つからない例に一般化に関する理論的保証を与えることである。
対照的に、他のいくつかの自然学習アルゴリズムは、そのような保証を提供していないことを証明します。
さらに,SATソルバをベースとした記述論理$\mathcal{ELH}^r$のバウンドフィッティングを効率的に実装し,その性能を最先端の学習者と比較するシステムSPELLを提案する。
関連論文リスト
- Learning Rules Explaining Interactive Theorem Proving Tactic Prediction [5.229806149125529]
この問題を帰納論理プログラミング(ILP)タスクとして表現する。
ILP表現を使用することで、追加で計算コストの高いプロパティをエンコードすることで、機能空間を豊かにしました。
我々は、このリッチな特徴空間を用いて、与えられた証明状態に戦術がいつ適用されたかを説明する規則を学ぶ。
論文 参考訳(メタデータ) (2024-11-02T09:18:33Z) - Symbolic Parameter Learning in Probabilistic Answer Set Programming [0.16385815610837165]
本稿では,確率的集合プログラミングの形式化を解くための2つのアルゴリズムを提案する。
第一に、オフザシェルフ制約最適化ソルバを用いてタスクを解く。
2つ目は期待最大化アルゴリズムの実装に基づいている。
論文 参考訳(メタデータ) (2024-08-16T13:32:47Z) - Learning-to-Optimize with PAC-Bayesian Guarantees: Theoretical Considerations and Practical Implementation [4.239829789304117]
最適学習の設定にはPAC-ベイズ理論を用いる。
証明可能な一般化保証付き最適化アルゴリズムを学習する最初のフレームワークを提示する。
学習アルゴリズムは、(決定論的)最悪のケース分析から得られた関連アルゴリズムを確実に上回ります。
論文 参考訳(メタデータ) (2024-04-04T08:24:57Z) - Multitask Kernel-based Learning with Logic Constraints [13.70920563542248]
本稿では,タスク関数の集合間の論理制約をカーネルマシンに組み込む枠組みを提案する。
特徴空間上の複数の一意述語をカーネルマシンで学習するマルチタスク学習方式を検討する。
一般的なアプローチでは、論理節を連続的な実装に変換し、カーネルベースの述語によって計算された出力を処理する。
論文 参考訳(メタデータ) (2024-02-16T12:11:34Z) - Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
ほとんどの実世界の強化学習アプリケーションでは、状態情報は部分的にしか観測できないため、マルコフ決定プロセスの仮定を破る。
我々は、部分的な観察から実践的な強化学習のためのコヒーレントな枠組みと抽出可能なアルゴリズムアプローチへと導く表現に基づく視点を開発する。
提案アルゴリズムは,様々なベンチマークで部分的な観察を行い,最先端の性能を超えることができることを実証的に実証した。
論文 参考訳(メタデータ) (2023-11-20T23:56:58Z) - A Theory of Unsupervised Speech Recognition [60.12287608968879]
教師なし音声認識(英語: Unsupervised speech Recognition, ASR-U)は、音声のみの音声とテキストのみのコーパスから自動音声認識システムを学習する問題である。
本稿では,ランダム行列理論とニューラル・タンジェント・カーネルの理論に基づいて,ASR-U系の特性を研究するための一般的な理論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-09T08:12:27Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - PAC-Bayesian Learning of Optimization Algorithms [6.624726878647541]
PAC-Bayes理論を学習最適化の設定に適用する。
証明可能な一般化保証(PAC-bounds)と高収束確率と高収束速度との間の明示的なトレードオフを持つ最適化アルゴリズムを学習する。
この結果は指数族に基づく一般の非有界損失関数に対してPAC-Bayes境界に依存する。
論文 参考訳(メタデータ) (2022-10-20T09:16:36Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
イベント認識(CER)システムは、事前に定義されたイベントパターンを使用して、ストリーミングタイムスタンプデータセットで発生を検出する。
本稿では,複雑なイベントパターンによる確率論的推論を,イベント計算で重み付けされたルールの形で行うことができるAnswer Set Programming(ASP)に基づくシステムを提案する。
その結果, 効率と予測の両面で, 新たなアプローチの優位性が示された。
論文 参考訳(メタデータ) (2021-03-31T23:16:29Z) - Learning explanations that are hard to vary [75.30552491694066]
例を越えた平均化は、異なる戦略を縫合する記憶とパッチワークのソリューションに有利であることを示す。
そこで我々は論理ANDに基づく単純な代替アルゴリズムを提案し,実験的に検証する。
論文 参考訳(メタデータ) (2020-09-01T10:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。