Measuring Consistency in Text-based Financial Forecasting Models
- URL: http://arxiv.org/abs/2305.08524v2
- Date: Fri, 2 Jun 2023 05:13:40 GMT
- Title: Measuring Consistency in Text-based Financial Forecasting Models
- Authors: Linyi Yang, Yingpeng Ma, Yue Zhang
- Abstract summary: FinTrust is an evaluation tool that assesses logical consistency in financial text.
We show that the consistency of state-of-the-art NLP models for financial forecasting is poor.
Our analysis of the performance degradation caused by meaning-preserving alternations suggests that current text-based methods are not suitable for robustly predicting market information.
- Score: 10.339586273664725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Financial forecasting has been an important and active area of machine
learning research, as even the most modest advantage in predictive accuracy can
be parlayed into significant financial gains. Recent advances in natural
language processing (NLP) bring the opportunity to leverage textual data, such
as earnings reports of publicly traded companies, to predict the return rate
for an asset. However, when dealing with such a sensitive task, the consistency
of models -- their invariance under meaning-preserving alternations in input --
is a crucial property for building user trust. Despite this, current financial
forecasting methods do not consider consistency. To address this problem, we
propose FinTrust, an evaluation tool that assesses logical consistency in
financial text. Using FinTrust, we show that the consistency of
state-of-the-art NLP models for financial forecasting is poor. Our analysis of
the performance degradation caused by meaning-preserving alternations suggests
that current text-based methods are not suitable for robustly predicting market
information. All resources are available at
https://github.com/yingpengma/fintrust.
Related papers
- Enhancing Financial Market Predictions: Causality-Driven Feature Selection [3.7426958478253254]
FinSen dataset integrates economic and financial news articles from 197 countries with stock market data.
Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability.
arXiv Detail & Related papers (2024-08-02T04:40:15Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Sentiment-driven prediction of financial returns: a Bayesian-enhanced
FinBERT approach [1.131316248570352]
We showcase the efficacy of leveraging sentiment information extracted from tweets using the FinBERT large language model.
This success translates into demonstrably higher cumulative profits during backtested trading.
arXiv Detail & Related papers (2024-03-07T11:56:36Z) - FinPT: Financial Risk Prediction with Profile Tuning on Pretrained
Foundation Models [32.7825479037623]
FinPT is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models.
FinBench is a set of high-quality datasets on financial risks such as default, fraud, and churn.
arXiv Detail & Related papers (2023-07-22T09:27:05Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
We provide a comprehensive review of uncertainty-relevant works in the NLP field.
We first categorize the sources of uncertainty in natural language into three types, including input, system, and output.
We discuss the challenges of uncertainty estimation in NLP and discuss potential future directions.
arXiv Detail & Related papers (2023-06-05T06:46:53Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures.
However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity.
We propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine.
arXiv Detail & Related papers (2023-02-23T15:58:30Z) - Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis
of BERT Classifiers and Weak Supervision [6.624726878647541]
We introduce weak learning, a recently proposed NLP approach to address the problem that text data is unlabeled.
We confirm that finetuning using weak labels enhances the predictive value of text-based features and raises forecast accuracy in the context of predicting cryptocurrency returns.
More fundamentally, the modeling paradigm we present, weak labeling domain-specific text and finetuning pretrained NLP models, is universally applicable in (financial) forecasting.
arXiv Detail & Related papers (2022-04-06T07:45:05Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.