Enhancing Financial Market Predictions: Causality-Driven Feature Selection
- URL: http://arxiv.org/abs/2408.01005v1
- Date: Fri, 2 Aug 2024 04:40:15 GMT
- Title: Enhancing Financial Market Predictions: Causality-Driven Feature Selection
- Authors: Wenhao Liang, Zhengyang Li, Weitong Chen,
- Abstract summary: FinSen dataset integrates economic and financial news articles from 197 countries with stock market data.
Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability.
- Score: 3.7426958478253254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the FinSen dataset that revolutionizes financial market analysis by integrating economic and financial news articles from 197 countries with stock market data. The dataset's extensive coverage spans 15 years from 2007 to 2023 with temporal information, offering a rich, global perspective with 160,000 records on financial market news. Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability. Utilizing the FinSen dataset, we introduce an innovative Focal Calibration Loss, reducing Expected Calibration Error (ECE) to 3.34 percent with the DAN 3 model. This not only improves prediction accuracy but also aligns probabilistic forecasts closely with real outcomes, crucial for the financial sector where predicted probability is paramount. Our approach demonstrates the effectiveness of combining sentiment analysis with precise calibration techniques for trustworthy financial forecasting where the cost of misinterpretation can be high. Finsen Data can be found at [this github URL](https://github.com/EagleAdelaide/FinSen_Dataset.git).
Related papers
- AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Sentiment-driven prediction of financial returns: a Bayesian-enhanced
FinBERT approach [1.131316248570352]
We showcase the efficacy of leveraging sentiment information extracted from tweets using the FinBERT large language model.
This success translates into demonstrably higher cumulative profits during backtested trading.
arXiv Detail & Related papers (2024-03-07T11:56:36Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Transforming Sentiment Analysis in the Financial Domain with ChatGPT [0.07499722271664146]
This study investigates the potential of large language models, particularly ChatGPT 3.5, in financial sentiment analysis.
ChatGPT exhibited approximately 35% enhanced performance in sentiment classification and a 36% higher correlation with market returns.
By underlining the significance of prompt engineering, particularly in zero-shot contexts, this study spotlights ChatGPT's potential to substantially boost sentiment analysis in financial applications.
arXiv Detail & Related papers (2023-08-13T09:20:47Z) - Measuring Consistency in Text-based Financial Forecasting Models [10.339586273664725]
FinTrust is an evaluation tool that assesses logical consistency in financial text.
We show that the consistency of state-of-the-art NLP models for financial forecasting is poor.
Our analysis of the performance degradation caused by meaning-preserving alternations suggests that current text-based methods are not suitable for robustly predicting market information.
arXiv Detail & Related papers (2023-05-15T10:32:26Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures.
However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity.
We propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine.
arXiv Detail & Related papers (2023-02-23T15:58:30Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Tracking Turbulence Through Financial News During COVID-19 [12.031113181911627]
We uncover and discuss relationships involving sentiment in financial publications during the 2020 pandemic U.S. financial crash.
First, we introduce a set of expert annotations of financial sentiment for articles from major American financial news publishers.
After an exploratory data analysis, we describe a CNN-based architecture to address the task of predicting financial sentiment.
arXiv Detail & Related papers (2021-09-09T15:55:32Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.