Interpretability at Scale: Identifying Causal Mechanisms in Alpaca
- URL: http://arxiv.org/abs/2305.08809v3
- Date: Tue, 6 Feb 2024 22:30:07 GMT
- Title: Interpretability at Scale: Identifying Causal Mechanisms in Alpaca
- Authors: Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, Noah D.
Goodman
- Abstract summary: We use Boundless DAS to efficiently search for interpretable causal structure in large language models while they follow instructions.
Our findings mark a first step toward faithfully understanding the inner-workings of our ever-growing and most widely deployed language models.
- Score: 62.65877150123775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining human-interpretable explanations of large, general-purpose language
models is an urgent goal for AI safety. However, it is just as important that
our interpretability methods are faithful to the causal dynamics underlying
model behavior and able to robustly generalize to unseen inputs. Distributed
Alignment Search (DAS) is a powerful gradient descent method grounded in a
theory of causal abstraction that has uncovered perfect alignments between
interpretable symbolic algorithms and small deep learning models fine-tuned for
specific tasks. In the present paper, we scale DAS significantly by replacing
the remaining brute-force search steps with learned parameters -- an approach
we call Boundless DAS. This enables us to efficiently search for interpretable
causal structure in large language models while they follow instructions. We
apply Boundless DAS to the Alpaca model (7B parameters), which, off the shelf,
solves a simple numerical reasoning problem. With Boundless DAS, we discover
that Alpaca does this by implementing a causal model with two interpretable
boolean variables. Furthermore, we find that the alignment of neural
representations with these variables is robust to changes in inputs and
instructions. These findings mark a first step toward faithfully understanding
the inner-workings of our ever-growing and most widely deployed language
models. Our tool is extensible to larger LLMs and is released publicly at
`https://github.com/stanfordnlp/pyvene`.
Related papers
- Interpreting Attention Layer Outputs with Sparse Autoencoders [3.201633659481912]
Decomposing model activations into interpretable components is a key open problem in mechanistic interpretability.
In this work we train SAEs on attention layer outputs and show that also here SAEs find a sparse, interpretable decomposition.
We show that Sparse Autoencoders are a useful tool that enable researchers to explain model behavior in greater detail than prior work.
arXiv Detail & Related papers (2024-06-25T17:43:13Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
A primary criticism towards language models (LMs) is their inscrutability.
This paper presents evidence that, despite their size and complexity, LMs sometimes exploit a simple vector arithmetic style mechanism to solve some relational tasks.
arXiv Detail & Related papers (2023-05-25T15:04:01Z) - DeforestVis: Behavior Analysis of Machine Learning Models with Surrogate Decision Stumps [46.58231605323107]
We propose DeforestVis, a visual analytics tool that offers summarization of the behaviour of complex ML models.
DeforestVis helps users to explore the complexity versus fidelity trade-off by incrementally generating more stumps.
We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.
arXiv Detail & Related papers (2023-03-31T21:17:15Z) - Interpretability in the Wild: a Circuit for Indirect Object
Identification in GPT-2 small [68.879023473838]
We present an explanation for how GPT-2 small performs a natural language task called indirect object identification (IOI)
To our knowledge, this investigation is the largest end-to-end attempt at reverse-engineering a natural behavior "in the wild" in a language model.
arXiv Detail & Related papers (2022-11-01T17:08:44Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Unnatural Language Inference [48.45003475966808]
We find that state-of-the-art NLI models, such as RoBERTa and BART, are invariant to, and sometimes even perform better on, examples with randomly reordered words.
Our findings call into question the idea that our natural language understanding models, and the tasks used for measuring their progress, genuinely require a human-like understanding of syntax.
arXiv Detail & Related papers (2020-12-30T20:40:48Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z) - Auditing and Debugging Deep Learning Models via Decision Boundaries:
Individual-level and Group-level Analysis [0.0]
We use flip points to explain, audit, and debug deep learning models.
A flip point is any point that lies on the boundary between two output classes.
We demonstrate our methods by investigating several models trained on standard datasets used in social applications of machine learning.
arXiv Detail & Related papers (2020-01-03T01:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.