DBR: Divergence-Based Regularization for Debiasing Natural Language Understanding Models
- URL: http://arxiv.org/abs/2502.18353v1
- Date: Tue, 25 Feb 2025 16:44:10 GMT
- Title: DBR: Divergence-Based Regularization for Debiasing Natural Language Understanding Models
- Authors: Zihao Li, Ruixiang Tang, Lu Cheng, Shuaiqiang Wang, Dawei Yin, Mengnan Du,
- Abstract summary: Pre-trained language models (PLMs) have achieved impressive results on various natural language processing tasks.<n>Recent research has revealed that these models often rely on superficial features and shortcuts instead of developing a genuine understanding of language.<n>We propose Divergence Based Regularization (DBR) to mitigate this shortcut learning behavior.
- Score: 50.54264918467997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained language models (PLMs) have achieved impressive results on various natural language processing tasks. However, recent research has revealed that these models often rely on superficial features and shortcuts instead of developing a genuine understanding of language, especially for natural language understanding (NLU) tasks. Consequently, the models struggle to generalize to out-of-domain data. In this work, we propose Divergence Based Regularization (DBR) to mitigate this shortcut learning behavior. Our method measures the divergence between the output distributions for original examples and examples where shortcut tokens have been masked. This process prevents the model's predictions from being overly influenced by shortcut features or biases. We evaluate our model on three NLU tasks and find that it improves out-of-domain performance with little loss of in-domain accuracy. Our results demonstrate that reducing the reliance on shortcuts and superficial features can enhance the generalization ability of large pre-trained language models.
Related papers
- Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
This paper proposes Language Rectified Flow (ours)
Our method is based on the reformulation of the standard probabilistic flow models.
Experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
arXiv Detail & Related papers (2024-03-25T17:58:22Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
A primary criticism towards language models (LMs) is their inscrutability.
This paper presents evidence that, despite their size and complexity, LMs sometimes exploit a simple vector arithmetic style mechanism to solve some relational tasks.
arXiv Detail & Related papers (2023-05-25T15:04:01Z) - What Matters In The Structured Pruning of Generative Language Models? [44.86217321428518]
Auto-regressive large language models such as GPT-3 require enormous computational resources to use.
Traditionally, structured pruning methods are employed to reduce resource usage.
We introduce Globally Unique Movement (GUM) to improve the uniqueness of neurons in pruned models.
arXiv Detail & Related papers (2023-02-07T22:05:55Z) - A Natural Bias for Language Generation Models [31.44752136404971]
We show that we can endow standard neural language generation models with a separate module that reflects unigram frequency statistics as prior knowledge.
We use neural machine translation as a test bed for this simple technique and observe that it: (i) improves learning efficiency; (ii) achieves better overall performance; and perhaps most importantly: appears to disentangle strong frequency effects.
arXiv Detail & Related papers (2022-12-19T18:14:36Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Augmenting Interpretable Models with LLMs during Training [73.40079895413861]
We propose Augmented Interpretable Models (Aug-imodels) to build efficient and interpretable models.
Aug-imodels use LLMs during fitting but not during inference, allowing complete transparency.
We explore two instantiations of Aug-imodels in natural-language processing: (i) Aug-GAM, which augments a generalized additive model with decoupled embeddings from an LLM and (ii) Aug-Tree, which augments a decision tree with LLM feature expansions.
arXiv Detail & Related papers (2022-09-23T18:36:01Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Invariant Language Modeling [23.096265183487034]
We propose a framework for learning invariant representations that generalize better across multiple environments.
In particular, we adapt a game-theoretic implementation of IRM (IRM-games) to language models.
We demonstrate the ability of our method to (i) remove structured noise, (ii) ignore specific spurious correlations without affecting global performance, and (iii) achieve better out-of-domain generalization.
arXiv Detail & Related papers (2021-10-16T00:03:19Z) - Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU
models [53.36605766266518]
We show that trained NLU models have strong preference for features located at the head of the long-tailed distribution.
We propose a shortcut mitigation framework, to suppress the model from making overconfident predictions for samples with large shortcut degree.
arXiv Detail & Related papers (2021-03-11T19:39:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.