AutoRecon: Automated 3D Object Discovery and Reconstruction
- URL: http://arxiv.org/abs/2305.08810v1
- Date: Mon, 15 May 2023 17:16:46 GMT
- Title: AutoRecon: Automated 3D Object Discovery and Reconstruction
- Authors: Yuang Wang, Xingyi He, Sida Peng, Haotong Lin, Hujun Bao, Xiaowei Zhou
- Abstract summary: We propose a novel framework named AutoRecon for the automated discovery and reconstruction of an object from multi-view images.
We demonstrate that foreground objects can be robustly located and segmented from SfM point clouds by leveraging self-supervised 2D vision transformer features.
Experiments on the DTU, BlendedMVS and CO3D-V2 datasets demonstrate the effectiveness and robustness of AutoRecon.
- Score: 41.60050228813979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fully automated object reconstruction pipeline is crucial for digital
content creation. While the area of 3D reconstruction has witnessed profound
developments, the removal of background to obtain a clean object model still
relies on different forms of manual labor, such as bounding box labeling, mask
annotations, and mesh manipulations. In this paper, we propose a novel
framework named AutoRecon for the automated discovery and reconstruction of an
object from multi-view images. We demonstrate that foreground objects can be
robustly located and segmented from SfM point clouds by leveraging
self-supervised 2D vision transformer features. Then, we reconstruct decomposed
neural scene representations with dense supervision provided by the decomposed
point clouds, resulting in accurate object reconstruction and segmentation.
Experiments on the DTU, BlendedMVS and CO3D-V2 datasets demonstrate the
effectiveness and robustness of AutoRecon.
Related papers
- DORec: Decomposed Object Reconstruction and Segmentation Utilizing 2D Self-Supervised Features [33.04128557550782]
We propose a Decomposed Object Reconstruction network based on neural implicit representations.
Our key idea is to use 2D self-supervised features to create two levels of masks for supervision: a binary mask for foreground regions and a K-cluster mask for semantically similar regions.
Experimental results on different datasets show DORec's superiority in segmenting and reconstructing diverse foreground objects from varied backgrounds enabling downstream tasks such as pose estimation.
arXiv Detail & Related papers (2023-10-17T09:21:29Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views.
Our framework iteratively adds new superquadrics wherever the reconstruction error is high.
It provides consistently more accurate 3D reconstructions, even from images in the wild.
arXiv Detail & Related papers (2023-09-05T10:21:37Z) - Farm3D: Learning Articulated 3D Animals by Distilling 2D Diffusion [67.71624118802411]
We present Farm3D, a method for learning category-specific 3D reconstructors for articulated objects.
We propose a framework that uses an image generator, such as Stable Diffusion, to generate synthetic training data.
Our network can be used for analysis, including monocular reconstruction, or for synthesis, generating articulated assets for real-time applications such as video games.
arXiv Detail & Related papers (2023-04-20T17:59:34Z) - Online Adaptation for Implicit Object Tracking and Shape Reconstruction
in the Wild [22.19769576901151]
We introduce a novel and unified framework which utilizes a DeepSDF model to simultaneously track and reconstruct 3D objects in the wild.
We show significant improvements over state-of-the-art methods for both tracking and shape reconstruction.
arXiv Detail & Related papers (2021-11-24T19:00:05Z) - Object Wake-up: 3-D Object Reconstruction, Animation, and in-situ
Rendering from a Single Image [58.69732754597448]
Given a picture of a chair, could we extract the 3-D shape of the chair, animate its plausible articulations and motions, and render in-situ in its original image space?
We devise an automated approach to extract and manipulate articulated objects in single images.
arXiv Detail & Related papers (2021-08-05T16:20:12Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph [54.701098964773756]
We aim to recover 3D objects with semantic parts and can be directly edited.
Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders.
Our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction.
arXiv Detail & Related papers (2020-05-27T12:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.