Learning to Learn Unlearned Feature for Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2305.08878v1
- Date: Sat, 13 May 2023 05:26:25 GMT
- Title: Learning to Learn Unlearned Feature for Brain Tumor Segmentation
- Authors: Seungyub Han, Yeongmo Kim, Seokhyeon Ha, Jungwoo Lee, Seunghong Choi
- Abstract summary: We propose a fine-tuning algorithm for brain tumor segmentation that needs only a few data samples and helps networks not to forget the original tasks.
We show a transfer learning method from high grade glioma to brain metastasis, and demonstrate that the proposed algorithm achieves balanced parameters for both glioma and brain metastasis domains within a few steps.
- Score: 13.402170359958752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fine-tuning algorithm for brain tumor segmentation that needs
only a few data samples and helps networks not to forget the original tasks.
Our approach is based on active learning and meta-learning. One of the
difficulties in medical image segmentation is the lack of datasets with proper
annotations, because it requires doctors to tag reliable annotation and there
are many variants of a disease, such as glioma and brain metastasis, which are
the different types of brain tumor and have different structural features in MR
images. Therefore, it is impossible to produce the large-scale medical image
datasets for all types of diseases. In this paper, we show a transfer learning
method from high grade glioma to brain metastasis, and demonstrate that the
proposed algorithm achieves balanced parameters for both glioma and brain
metastasis domains within a few steps.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Unsupervised Brain Tumor Segmentation with Image-based Prompts [12.525656002678856]
We propose an approach to unsupervised brain tumor segmentation by designing image-based prompts that allow indication of brain tumors.
Instead of directly training a model for brain tumor segmentation with a large amount of annotated data, we seek to train a model that can answer the question: is a voxel in the input image associated with tumor-like hyper-/hypo-intensity?
Since the hand-crafted designs may be too simplistic to represent all kinds of real tumors, the trained model may overfit the simplistic hand-crafted task rather than actually answer the question of abnormality.
arXiv Detail & Related papers (2023-04-04T02:28:25Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
Cancer is the second leading cause of death worldwide, responsible for over 9.5 million deaths in 2018 alone.
Brain tumors count for one out of every four cancer deaths.
We propose a system based on deep learning, containing encoder blocks. These blocks are fed with post-max-pooling features as residual learning.
Experimental evaluations of this model on a dataset consisting of 3064 MR images show 95.98% accuracy, which is better than previous studies on this database.
arXiv Detail & Related papers (2020-11-01T21:19:38Z) - Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge [53.48285637256203]
iSeg 2019 challenge provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods.
By the time of writing, there are 30 automatic segmentation methods participating in iSeg 2019.
We review the 8 top-ranked teams by detailing their pipelines/implementations, presenting experimental results and evaluating performance in terms of the whole brain, regions of interest, and gyral landmark curves.
arXiv Detail & Related papers (2020-07-04T13:39:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.