The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting
- URL: http://arxiv.org/abs/2305.08992v3
- Date: Sun, 22 Sep 2024 14:34:23 GMT
- Title: The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting
- Authors: Florian Kofler, Felix Meissen, Felix Steinbauer, Robert Graf, Stefan K Ehrlich, Annika Reinke, Eva Oswald, Diana Waldmannstetter, Florian Hoelzl, Izabela Horvath, Oezguen Turgut, Suprosanna Shit, Christina Bukas, Kaiyuan Yang, Johannes C. Paetzold, Ezequiel de da Rosa, Isra Mekki, Shankeeth Vinayahalingam, Hasan Kassem, Juexin Zhang, Ke Chen, Ying Weng, Alicia Durrer, Philippe C. Cattin, Julia Wolleb, M. S. Sadique, M. M. Rahman, W. Farzana, A. Temtam, K. M. Iftekharuddin, Maruf Adewole, Syed Muhammad Anwar, Ujjwal Baid, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Hongwei Bran Li, Ahmed W Moawad, Gian-Marco Conte, Keyvan Farahani, James Eddy, Micah Sheller, Sarthak Pati, Alexandros Karagyris, Alejandro Aristizabal, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Elaine Johanson, Zeke Meier, Ariana Familiar, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Abiodun Fatade, Olubukola Omidiji, Rachel Akinola Lagos, O O Olatunji, Goldey Khanna, John Kirkpatrick, Michelle Alonso-Basanta, Arif Rashid, Miriam Bornhorst, Ali Nabavizadeh, Natasha Lepore, Joshua Palmer, Antonio Porras, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Evan Calabrese, Jeffrey David Rudie, Marius George Linguraru, Juan Eugenio Iglesias, Koen Van Leemput, Spyridon Bakas, Benedikt Wiestler, Ivan Ezhov, Marie Piraud, Bjoern H Menze,
- Abstract summary: For brain tumor patients, the image acquisition time series typically starts with an already pathological scan.
Many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions.
Examples include, but are not limited to, algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction.
Here, the participants explore inpainting techniques to synthesize healthy brain scans from lesioned ones.
- Score: 50.01582455004711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with an already pathological scan. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions. Examples include, but are not limited to, algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS inpainting challenge. Here, the participants explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later, it will be updated to summarize the findings of the challenge. The challenge is organized as part of the ASNR-BraTS MICCAI challenge.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Advancing Brain Tumor Inpainting with Generative Models [0.7499722271664147]
Synthesizing healthy brain scans from diseased brain scans offers a potential solution to address the limitations of general-purpose algorithms.
We consider this a 3D inpainting task and investigate the adaptation of 2D inpainting methods to meet the requirements of 3D magnetic resonance imaging(MRI) data.
arXiv Detail & Related papers (2024-02-02T15:43:51Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) [9.082208613256295]
We present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023.
The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided.
arXiv Detail & Related papers (2023-05-15T20:49:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Diagnosis of Paratuberculosis in Histopathological Images Based on
Explainable Artificial Intelligence and Deep Learning [0.0]
This study examines a new and original dataset using the deep learning algorithm, and visualizes the output with gradient-weighted class activation mapping (Grad-CAM)
Both the decision-making processes and the explanations were verified, and the accuracy of the output was tested.
The research results greatly help pathologists in the diagnosis of paratuberculosis.
arXiv Detail & Related papers (2022-08-02T18:05:26Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
Fetoscopic laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS)
The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination.
Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking.
Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fet
arXiv Detail & Related papers (2022-06-24T23:44:42Z) - Fetal Brain Tissue Annotation and Segmentation Challenge Results [35.575646854499716]
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain.
We organized the Tissue Fetal (FeTA) Challenge in 2021 to encourage the development of automatic segmentation algorithms.
This paper provides a detailed analysis of the results from both a technical and clinical perspective.
arXiv Detail & Related papers (2022-04-20T16:14:43Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties.
The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research.
An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data.
arXiv Detail & Related papers (2022-02-14T19:29:08Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Deep Learning Based Brain Tumor Segmentation: A Survey [26.933777009547047]
Brain tumor segmentation is one of the most challenging problems in medical image analysis.
Deep learning methods have shown promising performance in solving various computer vision problems.
More than 100 scientific papers are selected and discussed in this survey.
arXiv Detail & Related papers (2020-07-18T17:14:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.