Deep Learning Based Brain Tumor Segmentation: A Survey
- URL: http://arxiv.org/abs/2007.09479v3
- Date: Wed, 17 Nov 2021 11:21:55 GMT
- Title: Deep Learning Based Brain Tumor Segmentation: A Survey
- Authors: Zhihua Liu, Lei Tong, Zheheng Jiang, Long Chen, Feixiang Zhou, Qianni
Zhang, Xiangrong Zhang, Yaochu Jin, Huiyu Zhou
- Abstract summary: Brain tumor segmentation is one of the most challenging problems in medical image analysis.
Deep learning methods have shown promising performance in solving various computer vision problems.
More than 100 scientific papers are selected and discussed in this survey.
- Score: 26.933777009547047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumor segmentation is one of the most challenging problems in medical
image analysis. The goal of brain tumor segmentation is to generate accurate
delineation of brain tumor regions. In recent years, deep learning methods have
shown promising performance in solving various computer vision problems, such
as image classification, object detection and semantic segmentation. A number
of deep learning based methods have been applied to brain tumor segmentation
and achieved promising results. Considering the remarkable breakthroughs made
by state-of-the-art technologies, we use this survey to provide a comprehensive
study of recently developed deep learning based brain tumor segmentation
techniques. More than 100 scientific papers are selected and discussed in this
survey, extensively covering technical aspects such as network architecture
design, segmentation under imbalanced conditions, and multi-modality processes.
We also provide insightful discussions for future development directions.
Related papers
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting [50.01582455004711]
For brain tumor patients, the image acquisition time series typically starts with an already pathological scan.
Many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions.
Examples include, but are not limited to, algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction.
Here, the participants explore inpainting techniques to synthesize healthy brain scans from lesioned ones.
arXiv Detail & Related papers (2023-05-15T20:17:03Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation [12.256043883052506]
Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death.
This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection.
Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art.
arXiv Detail & Related papers (2021-12-28T22:49:44Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge [53.48285637256203]
iSeg 2019 challenge provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods.
By the time of writing, there are 30 automatic segmentation methods participating in iSeg 2019.
We review the 8 top-ranked teams by detailing their pipelines/implementations, presenting experimental results and evaluating performance in terms of the whole brain, regions of interest, and gyral landmark curves.
arXiv Detail & Related papers (2020-07-04T13:39:48Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z) - Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs [2.4736005621421686]
Multimodal brain tumor segmentation challenge (BraTS) brings together researchers to improve automated methods for 3D MRI brain tumor segmentation.
We evaluate the method on BraTS 2019 challenge.
arXiv Detail & Related papers (2020-01-06T07:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.