論文の概要: Easy-to-Hard Learning for Information Extraction
- arxiv url: http://arxiv.org/abs/2305.09193v2
- Date: Fri, 19 May 2023 11:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 18:07:47.821329
- Title: Easy-to-Hard Learning for Information Extraction
- Title(参考訳): 情報抽出のための難易度学習
- Authors: Chang Gao, Wenxuan Zhang, Wai Lam, Lidong Bing
- Abstract要約: 情報抽出システムは、構造化されていないテキストから構造化された情報を自動的に抽出することを目的としている。
本稿では,3段階,すなわち易解な段階,難解な段階,主段階の3段階からなる統合型易解学習フレームワークを提案する。
学習プロセスを複数の段階に分割することで,一般のIEタスク知識の獲得と一般化能力の向上が促進される。
- 参考スコア(独自算出の注目度): 57.827955646831526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information extraction (IE) systems aim to automatically extract structured
information, such as named entities, relations between entities, and events,
from unstructured texts. While most existing work addresses a particular IE
task, universally modeling various IE tasks with one model has achieved great
success recently. Despite their success, they employ a one-stage learning
strategy, i.e., directly learning to extract the target structure given the
input text, which contradicts the human learning process. In this paper, we
propose a unified easy-to-hard learning framework consisting of three stages,
i.e., the easy stage, the hard stage, and the main stage, for IE by mimicking
the human learning process. By breaking down the learning process into multiple
stages, our framework facilitates the model to acquire general IE task
knowledge and improve its generalization ability. Extensive experiments across
four IE tasks demonstrate the effectiveness of our framework. We achieve new
state-of-the-art results on 13 out of 17 datasets. Our code is available at
\url{https://github.com/DAMO-NLP-SG/IE-E2H}.
- Abstract(参考訳): 情報抽出(ie)システムは、非構造化テキストから名前付きエンティティ、エンティティ間の関係、イベントなどの構造化情報を自動的に抽出することを目的としている。
既存の作業の多くは特定のIEタスクに対処するが、様々なIEタスクを1つのモデルで普遍的にモデル化することは、最近大きな成功を収めている。
その成功にもかかわらず、彼らは1段階の学習戦略、すなわち、人間の学習プロセスと矛盾する入力テキストが与えられた対象構造を抽出するために直接学習する。
本稿では,人間学習過程を模倣したieの3段階,すなわち,簡単なステージ,難しいステージ,そしてメインステージからなる統一的なハードな学習フレームワークを提案する。
学習プロセスを複数の段階に分割することで,一般のIEタスク知識の獲得と一般化能力の向上が促進される。
4つのIEタスクにわたる大規模な実験は、我々のフレームワークの有効性を示す。
17のデータセットのうち13で最新の結果を得る。
我々のコードは \url{https://github.com/DAMO-NLP-SG/IE-E2H} で入手できる。
関連論文リスト
- RUIE: Retrieval-based Unified Information Extraction using Large Language Model [6.788855739199981]
統一された情報抽出は、単一のモデルまたはフレームワークを使用して全ての情報抽出タスクを完了することを目的としている。
本稿では,テキスト内学習を活用して迅速な一般化を実現するフレームワークRUIE(Retrieval-based Unified Information extract)を提案する。
8つのホールドアウトデータセットの実験結果から、未確認タスクを一般化するRUIEの有効性が示された。
論文 参考訳(メタデータ) (2024-09-18T03:20:04Z) - A Regularization-based Transfer Learning Method for Information
Extraction via Instructed Graph Decoder [29.242560023747252]
グラフデコーダを用いたIE(TIE)の正規化に基づく転送学習手法を提案する。
具体的には、まず、よく知られたすべてのIEタスクからデータセットの命令プールを構築し、次に指示されたグラフデコーダを提示する。
このようにして、既存のデータセットと共有される共通知識を学び、新しいラベルを持つ新しいデータセットに転送することができる。
論文 参考訳(メタデータ) (2024-03-01T13:04:12Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Universal Information Extraction with Meta-Pretrained Self-Retrieval [39.69130086395689]
ユニバーサル情報抽出(Universal IE)は、テキストから構造までの一様生成方法で異なる抽出タスクを解くことを目的としている。
外部知識ベースから知識を取得することは、モデルがこの問題を克服するのに役立つかもしれないが、様々なIEタスクに適した知識ベースを構築することは不可能である。
本稿では,PLMからタスク固有の知識を抽出し,汎用IEを強化するメタレトリバーを提案する。
論文 参考訳(メタデータ) (2023-06-18T00:16:00Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Unified Structure Generation for Universal Information Extraction [58.89057387608414]
UIEは、異なるIEタスクを普遍的にモデル化し、ターゲット構造を適応的に生成し、異なる知識ソースから一般的なIE能力を協調的に学習することができる。
実験によると、UIEは4つのIEタスク、13のデータセット、およびすべての教師付き、低リソース、数ショット設定で最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-03-23T08:49:29Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。