Exploring Platform Migration Patterns between Twitter and Mastodon: A User Behavior Study
- URL: http://arxiv.org/abs/2305.09196v4
- Date: Mon, 22 Apr 2024 18:11:26 GMT
- Title: Exploring Platform Migration Patterns between Twitter and Mastodon: A User Behavior Study
- Authors: Ujun Jeong, Paras Sheth, Anique Tahir, Faisal Alatawi, H. Russell Bernard, Huan Liu,
- Abstract summary: A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are.
In this study, we elaborate on how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following the ownership change of Twitter.
- Score: 13.424528400470198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate on how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following the ownership change of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patterns. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how user behaviors correspond with the characteristics of each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study.
Related papers
- Modeling Domain and Feedback Transitions for Cross-Domain Sequential Recommendation [60.09293734134179]
$textTransition2$ is a novel method to model transitions across both domains and types of user feedback.
We introduce a transition-aware graph encoder based on user history, assigning different weights to edges according to the feedback type.
We encode the user history using a cross-transition multi-head self-attention, incorporating various masks to distinguish different types of transitions.
arXiv Detail & Related papers (2024-08-15T15:18:55Z) - User Strategization and Trustworthy Algorithms [81.82279667028423]
We show that user strategization can actually help platforms in the short term.
We then show that it corrupts platforms' data and ultimately hurts their ability to make counterfactual decisions.
arXiv Detail & Related papers (2023-12-29T16:09:42Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
We revisit the self-supervised multi-task learning framework, proposing several updates to the original method.
We modernize the 3D convolutional backbone by introducing multi-head self-attention modules.
In our attempt to further improve the model, we study additional self-supervised learning tasks, such as predicting segmentation maps.
arXiv Detail & Related papers (2022-07-16T19:25:41Z) - Fashionformer: A simple, Effective and Unified Baseline for Human
Fashion Segmentation and Recognition [80.74495836502919]
In this work, we focus on joint human fashion segmentation and attribute recognition.
We introduce the object query for segmentation and the attribute query for attribute prediction.
For attribute stream, we design a novel Multi-Layer Rendering module to explore more fine-grained features.
arXiv Detail & Related papers (2022-04-10T11:11:10Z) - Contrastive Meta Learning with Behavior Multiplicity for Recommendation [42.15990960863924]
A well-informed recommendation framework could not only help users identify their interested items, but also benefit the revenue of various online platforms.
We propose Contrastive Meta Learning (CML) to maintain dedicated cross-type behavior dependency for different users.
Our method consistently outperforms various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2022-02-17T08:51:24Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Analysis of Twitter Users' Lifestyle Choices using Joint Embedding Model [29.89122455417348]
This paper suggests a joint embedding model, incorporating users' social and textual information to learn contextualized user representations.
We apply our model to tweets related to two lifestyle activities, Yoga' and Keto diet' and use it to analyze users' activity type and motivation.
arXiv Detail & Related papers (2021-04-07T15:29:36Z) - User Factor Adaptation for User Embedding via Multitask Learning [45.56193775870044]
We treat the user interest as domains and empirically examine how the user language can vary across the user factor.
We propose a user embedding model to account for the language variability of user interests via a multitask learning framework.
The model learns user language and its variations without human supervision.
arXiv Detail & Related papers (2021-02-22T15:21:01Z) - Migratable AI : Investigating users' affect on identity and information
migration of a conversational AI agent [25.029958885340058]
We present a 2x2 between-subjects study in a task-based scenario using information migration and identity migration as parameters.
Our results show that users reported highest joy and were most surprised when both the information and identity was migrated; and reported most anger when the information was migrated without the identity of their agent.
arXiv Detail & Related papers (2020-10-22T22:31:34Z) - Migratable AI: Personalizing Dialog Conversations with migration context [25.029958885340058]
We collected a dataset from the dialog conversations between crowdsourced workers with the migration context.
We trained the generative and information retrieval models on the dataset using with and without migration context.
We believe that the migration dataset would be useful for training future migratable AI systems.
arXiv Detail & Related papers (2020-10-22T22:23:03Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.