Accurate Gigapixel Crowd Counting by Iterative Zooming and Refinement
- URL: http://arxiv.org/abs/2305.09271v1
- Date: Tue, 16 May 2023 08:25:27 GMT
- Title: Accurate Gigapixel Crowd Counting by Iterative Zooming and Refinement
- Authors: Arian Bakhtiarnia, Qi Zhang and Alexandros Iosifidis
- Abstract summary: GigaZoom iteratively zooms into the densest areas of the image and refines coarser density maps with finer details.
We show that GigaZoom obtains the state-of-the-art for gigapixel crowd counting and improves the accuracy of the next best method by 42%.
- Score: 90.76576712433595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing prevalence of gigapixel resolutions has presented new
challenges for crowd counting. Such resolutions are far beyond the memory and
computation limits of current GPUs, and available deep neural network
architectures and training procedures are not designed for such massive inputs.
Although several methods have been proposed to address these challenges, they
are either limited to downsampling the input image to a small size, or
borrowing from other gigapixel tasks, which are not tailored for crowd
counting. In this paper, we propose a novel method called GigaZoom, which
iteratively zooms into the densest areas of the image and refines coarser
density maps with finer details. Through experiments, we show that GigaZoom
obtains the state-of-the-art for gigapixel crowd counting and improves the
accuracy of the next best method by 42%.
Related papers
- SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
'SaccadeDet' is an innovative architecture for gigapixel-level object detection, inspired by the human eye saccadic movement.
Our approach, evaluated on the PANDA dataset, achieves an 8x speed increase over the state-of-the-art methods.
It also demonstrates significant potential in gigapixel-level pathology analysis through its application to Whole Slide Imaging.
arXiv Detail & Related papers (2024-07-25T11:22:54Z) - Towards Efficient and Scale-Robust Ultra-High-Definition Image
Demoireing [71.62289021118983]
We present an efficient baseline model ESDNet for tackling 4K moire images, wherein we build a semantic-aligned scale-aware module to address the scale variation of moire patterns.
Our approach outperforms state-of-the-art methods by a large margin while being much more lightweight.
arXiv Detail & Related papers (2022-07-20T14:20:52Z) - Any-resolution Training for High-resolution Image Synthesis [55.19874755679901]
Generative models operate at fixed resolution, even though natural images come in a variety of sizes.
We argue that every pixel matters and create datasets with variable-size images, collected at their native resolutions.
We introduce continuous-scale training, a process that samples patches at random scales to train a new generator with variable output resolutions.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) is designed to efficiently and accurately implement high-resolution superpixel segmentation.
DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
arXiv Detail & Related papers (2021-08-19T10:33:05Z) - Cascaded Residual Density Network for Crowd Counting [63.714719914701014]
We propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the high-quality density map for crowd counting more accurately.
A novel additional local count loss is presented to refine the accuracy of crowd counting.
arXiv Detail & Related papers (2021-07-29T03:07:11Z) - Efficient Classification of Very Large Images with Tiny Objects [15.822654320750054]
We present an end-to-end CNN model termed Zoom-In network for classification of large images with tiny objects.
We evaluate our method on two large-image datasets and one gigapixel dataset.
arXiv Detail & Related papers (2021-06-04T20:13:04Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
We propose a way to implicitly integrate a superpixel scheme into CNNs.
Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels.
We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2021-03-05T02:20:26Z) - Contextual Residual Aggregation for Ultra High-Resolution Image
Inpainting [12.839962012888199]
We propose a Contextual Residual Aggregation (CRA) mechanism that can produce high-frequency residuals for missing contents.
CRA mechanism produces high-frequency residuals for missing contents by weighted aggregating residuals from contextual patches.
We train the proposed model on small images with resolutions 512x512 and perform inference on high-resolution images, achieving compelling inpainting quality.
arXiv Detail & Related papers (2020-05-19T18:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.