Atom interferometry with coherent enhancement of Bragg pulse sequences
- URL: http://arxiv.org/abs/2305.09507v2
- Date: Wed, 4 Oct 2023 08:32:30 GMT
- Title: Atom interferometry with coherent enhancement of Bragg pulse sequences
- Authors: Ashley B\'eguin, Tangui Rodzinka, L\'eo Calmels, Baptiste Allard,
Alexandre Gauguet
- Abstract summary: We demonstrate momentum splitting up to 200 photon recoils in an ultra-cold atom interferometer.
We highlight a new mechanism of destructive interference of the losses leading to a sizeable efficiency enhancement of the beam splitters.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report here on the realization of light-pulse atom interferometers with
Large-momentum-transfer atom optics based on a sequence of Bragg transitions.
We demonstrate momentum splitting up to 200 photon recoils in an ultra-cold
atom interferometer. We highlight a new mechanism of destructive interference
of the losses leading to a sizeable efficiency enhancement of the beam
splitters. We perform a comprehensive study of parasitic interferometers due to
the inherent multi-port feature of the quasi-Bragg pulses. Finally, we
experimentally verify the phase shift enhancement and characterize the
interferometer visibility loss.
Related papers
- Dichroic mirror pulses for optimized higher-order atomic Bragg diffraction [0.0]
We present the experimental realization of dichroic mirror pulses for atom interferometry specifically designed for higher-order Bragg diffraction.
Our approach selectively reflects resonant atom paths into the detected interferometer output, ensuring that these contribute to the signal with intent.
parasitic paths are efficiently transmitted by the mirror and not directed to the relevant interferometer outputs.
arXiv Detail & Related papers (2024-08-27T12:10:45Z) - Robust Quantum Control via Multipath Interference for Thousandfold Phase Amplification in a Resonant Atom Interferometer [0.4941383238872373]
We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities.
We apply this method to a resonant atom interferometer and achieve thousand-fold phase amplification, representing a fifty-fold improvement over the performance observed without optimized control.
We anticipate our findings will significantly benefit the performance of matter-wave interferometers for a variety of applications, including dark matter, dark energy, and gravitational wave detection.
arXiv Detail & Related papers (2024-07-15T21:19:52Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Bragg-diffraction-induced imperfections of the signal in retroreflective
atom interferometers [0.0]
Off-resonant higher-order diffraction leads to population loss, spurious interferometer paths, and diffraction phases.
We compare first-order single and double Bragg diffraction in retroreflective setups.
Some effects of diffraction phases can be avoided by adding the population of the outer exit ports of double diffraction.
arXiv Detail & Related papers (2022-03-14T11:56:35Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Tuning the mode-splitting of a semiconductor microcavity with uniaxial
stress [49.212762955720706]
In this work we use an open microcavity composed of a "bottom" semiconductor distributed Bragg reflector (DBR) incorporating an n-i-p heterostructure.
We demonstrate a reversible in-situ technique to tune the mode-splitting by applying uniaxial stress to the semiconductor DBR.
A thorough study of the mode-splitting and its tuning across the stop-band leads to a quantitative understanding of the mechanism behind the results.
arXiv Detail & Related papers (2021-02-18T13:38:32Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Tailoring multi-loop atom interferometers with adjustable momentum
transfer [0.0]
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space.
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest.
Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates.
arXiv Detail & Related papers (2020-06-15T12:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.