Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer
- URL: http://arxiv.org/abs/2104.11577v2
- Date: Thu, 29 Apr 2021 12:45:57 GMT
- Title: Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer
- Authors: Sebastian Gstir, Edmond Chan, Toni Eichelkraut, Alexander Szameit,
Robert Keil, Gregor Weihs
- Abstract summary: We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally investigate the suitability of a multi-path waveguide
interferometer with mechanical shutters for performing a test for hypercomplex
quantum mechanics. Probing the interferometer with coherent light we
systematically analyse the influence of experimental imperfections that could
lead to a false-positive test result. In particular, we analyse the effects of
detector nonlinearity, input-power and phase fluctuations on different
timescales, closed-state transmissivity of shutters and crosstalk between
different interferometer paths. In our experiment, a seemingly small shutter
transmissivity in the order of about $2 \times 10^{-4}$ is the main source of
systematic error, which suggests that this is a key imperfection to monitor and
mitigate in future experiments.
Related papers
- Robust Quantum Control via Multipath Interference for Thousandfold Phase Amplification in a Resonant Atom Interferometer [0.4941383238872373]
We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities.
We apply this method to a resonant atom interferometer and achieve thousand-fold phase amplification, representing a fifty-fold improvement over the performance observed without optimized control.
We anticipate our findings will significantly benefit the performance of matter-wave interferometers for a variety of applications, including dark matter, dark energy, and gravitational wave detection.
arXiv Detail & Related papers (2024-07-15T21:19:52Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Enhanced nonlinear interferometry via seeding [0.5760489824496111]
We analyse a nonlinear interferometer in the presence of internal losses and inefficient detectors.
We derive analytical expressions for the interference visibility, contrast, phase sensitivity, and signal-to-noise ratio.
Our results expand the nonlinear interferometry capabilities in the field of quantum imaging, metrology, and spectroscopy.
arXiv Detail & Related papers (2022-09-14T16:13:14Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Measurement-dependent erasure of distinguishability for the observation
of interference in an unbalanced SU(1,1) interferometer [3.2646353020000687]
Quantum interference can disappear with the mere possibility of distinguishability without performing the act.
We create such distinguishability in an unbalanced SU (1,1) interferometer and observe no interference in the direct photodetection of the outputs.
Here, we report a method of homodyne detection that can also recover interference effect.
arXiv Detail & Related papers (2021-09-22T08:39:26Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Hyper Ramsey-Bord\'e matter-wave interferometry for robust quantum
sensors [0.0]
A new generation of atomic sensors using ultra-narrow optical clock transitions and composite pulses are pushing quantum engineering control to a very high level of precision.
We propose a new version of Ramsey-Bord'e interferometry introducing arbitrary composite laser pulses with tailored pulse duration, Rabi field, detuning and phase-steps.
We present, for the first time, new developments for robust hyper Ramsey-Bord'e and Mach-Zehnder interferometers.
arXiv Detail & Related papers (2020-12-07T17:47:28Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Tailoring multi-loop atom interferometers with adjustable momentum
transfer [0.0]
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space.
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest.
Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates.
arXiv Detail & Related papers (2020-06-15T12:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.