論文の概要: Bidirectional Generative Framework for Cross-domain Aspect-based
Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2305.09509v1
- Date: Tue, 16 May 2023 15:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 14:29:03.865347
- Title: Bidirectional Generative Framework for Cross-domain Aspect-based
Sentiment Analysis
- Title(参考訳): クロスドメインアスペクトに基づく知覚分析のための双方向生成フレームワーク
- Authors: Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, Lidong Bing
- Abstract要約: クロスドメインアスペクトベースの感情分析(ABSA)は、ソースドメインから知識を伝達することで、ターゲットドメイン上で様々なきめ細かい感情分析タスクを実行することを目的としている。
本稿では,多様なドメイン間ABSAタスクに対処するための統合双方向生成フレームワークを提案する。
我々のフレームワークは、テキストからラベルまでの方向とラベルからテキストへの方向の両方で生成モデルを訓練する。
- 参考スコア(独自算出の注目度): 68.742820522137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-domain aspect-based sentiment analysis (ABSA) aims to perform various
fine-grained sentiment analysis tasks on a target domain by transferring
knowledge from a source domain. Since labeled data only exists in the source
domain, a model is expected to bridge the domain gap for tackling cross-domain
ABSA. Though domain adaptation methods have proven to be effective, most of
them are based on a discriminative model, which needs to be specifically
designed for different ABSA tasks. To offer a more general solution, we propose
a unified bidirectional generative framework to tackle various cross-domain
ABSA tasks. Specifically, our framework trains a generative model in both
text-to-label and label-to-text directions. The former transforms each task
into a unified format to learn domain-agnostic features, and the latter
generates natural sentences from noisy labels for data augmentation, with which
a more accurate model can be trained. To investigate the effectiveness and
generality of our framework, we conduct extensive experiments on four
cross-domain ABSA tasks and present new state-of-the-art results on all tasks.
Our data and code are publicly available at
\url{https://github.com/DAMO-NLP-SG/BGCA}.
- Abstract(参考訳): クロスドメインアスペクトベースの感情分析(ABSA)は、ソースドメインから知識を伝達することで、ターゲットドメイン上で様々なきめ細かい感情分析タスクを実行することを目的としている。
ラベル付きデータはソースドメインにのみ存在するため、モデルはクロスドメインABSAに取り組むためにドメインギャップを橋渡しすることが期待される。
ドメイン適応法は有効であることが証明されているが、そのほとんどは識別モデルに基づいており、異なるABSAタスクのために特別に設計する必要がある。
より汎用的なソリューションとして,多様なドメイン間ABSAタスクに対処する統合双方向生成フレームワークを提案する。
具体的には、テキストからラベルまでの方向とラベルからテキストへの方向の両方で生成モデルを訓練する。
前者は各タスクを統一形式に変換してドメインに依存しない特徴を学習し、後者はデータ拡張のためにノイズラベルから自然な文を生成し、より正確なモデルを訓練することができる。
本フレームワークの有効性と汎用性を検討するため,4つのクロスドメインABSAタスクについて広範な実験を行い,すべてのタスクについて最新の結果を示す。
我々のデータとコードは、 \url{https://github.com/DAMO-NLP-SG/BGCA}で公開されています。
関連論文リスト
- Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
アスペクトベース感情分析(ABSA)は感情分析の重要なサブタスクである。
ABSAのための大規模言語モデルに基づく連続学習(textttLLM-CL)モデルを提案する。
論文 参考訳(メタデータ) (2024-05-09T02:00:07Z) - A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification [46.47734465505251]
クロスドメインテキスト分類は、ラベル付きデータを持たないターゲットドメインにモデルを適応させることを目的としている。
クロスドメインテキスト分類のための2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-18T06:21:40Z) - Syntax-Guided Domain Adaptation for Aspect-based Sentiment Analysis [23.883810236153757]
ドメイン適応は、ドメイン間で共通の知識を伝達することによって、新しいドメインにおけるデータ不足問題を緩和するための一般的なソリューションである。
より効果的なクロスドメインABSAのための、SDAMと呼ばれる新しい構文誘導型ドメイン適応モデルを提案する。
我々のモデルは、クロスドメインEnd2EndABSAタスクのMicro-F1メトリックに関して、最先端のベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2022-11-10T10:09:33Z) - WUDA: Unsupervised Domain Adaptation Based on Weak Source Domain Labels [5.718326013810649]
セマンティックセグメンテーションのための教師なしドメイン適応(UDA)は、細かなソースドメインラベルを持つクロスドメイン問題に対処する。
本稿では、弱ソースドメインラベルに基づく教師なしドメイン適応という新しいタスクを定義する。
論文 参考訳(メタデータ) (2022-10-05T08:28:57Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
我々は、ドメイン固有性とドメイン不変性の両方が、re-idモデルの一般化能力の向上に不可欠であると主張する。
これら2種類の情報を同時にモデル化するために,2ストリーム適応学習 (TAL) を命名した。
我々のフレームワークは、単一ソースとマルチソースの両方のドメイン一般化タスクに適用できる。
論文 参考訳(メタデータ) (2021-11-29T01:27:42Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Cross-Domain Label-Adaptive Stance Detection [32.800766653254634]
距離検出は、ターゲットに対する作家の視点の分類に関するものである。
本稿では,16のスタンス検出データセットの詳細な分析を行う。
ユーザ定義ラベルの領域外予測のためのエンドツーエンドの非監視フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-15T14:04:29Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA)は、異なる分散されたラベル付きソースドメインから学習モデルを構築することで、ラベルなしのターゲットサンプルを認識しようとする。
本稿では,タスク固有のカテゴリ境界に一致するソースとターゲット領域のデータ分布を同時に整合させる新しいアドリラルデュアル・ディスタンス・ネットワーク(AD$2$CN)を提案する。
具体的には、ドメイン不変の特徴発生器を利用して、識別的クロスドメインアライメントのガイダンスにより、ソースとターゲットデータを潜在共通空間に埋め込む。
論文 参考訳(メタデータ) (2020-08-27T01:29:10Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。