論文の概要: DLUE: Benchmarking Document Language Understanding
- arxiv url: http://arxiv.org/abs/2305.09520v1
- Date: Tue, 16 May 2023 15:16:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 14:31:24.847028
- Title: DLUE: Benchmarking Document Language Understanding
- Title(参考訳): DLUE: ドキュメント言語理解のベンチマーク
- Authors: Ruoxi Xu, Hongyu Lin, Xinyan Guan, Xianpei Han, Yingfei Sun, Le Sun
- Abstract要約: 文書理解能力を包括的に評価する方法については、確固たるコンセンサスはない。
本稿では,文書分類,文書構造解析,文書情報抽出,文書書き起こしの4つの代表的能力について要約する。
新しい評価フレームワークでは、新しいタスクスイートである textbfDLUE の textbfDocument Language Understanding Evaluation を提案する。
- 参考スコア(独自算出の注目度): 32.550855843975484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding documents is central to many real-world tasks but remains a
challenging topic. Unfortunately, there is no well-established consensus on how
to comprehensively evaluate document understanding abilities, which
significantly hinders the fair comparison and measuring the progress of the
field. To benchmark document understanding researches, this paper summarizes
four representative abilities, i.e., document classification, document
structural analysis, document information extraction, and document
transcription. Under the new evaluation framework, we propose \textbf{Document
Language Understanding Evaluation} -- \textbf{DLUE}, a new task suite which
covers a wide-range of tasks in various forms, domains and document genres. We
also systematically evaluate six well-established transformer models on DLUE,
and find that due to the lengthy content, complicated underlying structure and
dispersed knowledge, document understanding is still far from being solved, and
currently there is no neural architecture that dominates all tasks, raising
requirements for a universal document understanding architecture.
- Abstract(参考訳): ドキュメントを理解することは、多くの現実世界のタスクの中心であるが、依然として難しいトピックである。
残念ながら、文書理解能力の総合的な評価方法に関する明確なコンセンサスはなく、公正な比較やフィールドの進捗測定を著しく妨げている。
文書理解研究をベンチマークするために,文書分類,文書構造解析,文書情報抽出,文書転写という4つの代表的な能力について概説する。
新しい評価フレームワークでは、さまざまな形式、ドメイン、文書ジャンルの幅広いタスクをカバーする新しいタスクスイートである \textbf{document language understanding evaluation} -- \textbf{dlue} を提案する。
また,dlue上で確立された6つのトランスフォーマーモデルを体系的に評価し,長い内容,複雑な構造,分散した知識により,文書理解はまだ解決に至らず,現在,すべてのタスクを支配するニューラルネットワークは存在せず,普遍的な文書理解アーキテクチャの要件を提起している。
関連論文リスト
- Information Extraction from Documents: Question Answering vs Token
Classification in real-world setups [0.0]
質問応答法と古典的トークン分類法を比較して,文書鍵情報抽出を行う。
我々の研究は、クリーンで比較的短いエンティティを扱う場合、トークン分類に基づくアプローチを用いるのが最善であることを示した。
論文 参考訳(メタデータ) (2023-04-21T14:43:42Z) - PDFVQA: A New Dataset for Real-World VQA on PDF Documents [2.105395241374678]
文書ベースのビジュアル質問回答は、自然言語質問の条件下での文書イメージの文書理解を検証する。
我々のPDF-VQAデータセットは、単一のドキュメントページ上の制限を、複数のページの全ドキュメントに対して質問する新しいスケールに拡張する。
論文 参考訳(メタデータ) (2023-04-13T12:28:14Z) - Layout-Aware Information Extraction for Document-Grounded Dialogue:
Dataset, Method and Demonstration [75.47708732473586]
視覚的にリッチな文書から構造的知識と意味的知識の両方を抽出するためのレイアウト対応文書レベル情報抽出データセット(LIE)を提案する。
LIEには製品および公式文書の4,061ページから3つの抽出タスクの62kアノテーションが含まれている。
実験の結果、レイアウトはVRDベースの抽出に不可欠であることが示され、システムデモでは、抽出された知識が、ユーザが関心を持っている答えを見つけるのに役立つことも確認されている。
論文 参考訳(メタデータ) (2022-07-14T07:59:45Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - Cross-Domain Document Layout Analysis via Unsupervised Document Style
Guide [12.742967563805074]
文書レイアウト解析(DLA)は、文書画像を高レベルな意味領域に分解することを目的としている。
多くの研究者がこの課題に取り組み、大規模なトレーニングセットを構築するためにデータを合成した。
本稿では文書スタイルのガイダンスに基づく教師なしクロスドメインDLAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-24T00:49:19Z) - The Law of Large Documents: Understanding the Structure of Legal
Contracts Using Visual Cues [0.7425558351422133]
コンピュータビジョン手法を用いて得られた視覚的手がかりが文書理解タスクの精度に与える影響を計測する。
構造メタデータに基づく文書のセグメンテーション手法は,4つの文書理解タスクにおいて,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-16T21:21:50Z) - Timestamping Documents and Beliefs [1.4467794332678539]
文書デートは、文書の時間構造に関する推論を必要とする難しい問題である。
本稿では,グラフ畳み込みネットワーク(GCN)に基づく文書年代測定手法であるNeuralDaterを提案する。
また,注意に基づく文書デートシステムであるAD3: Attentive Deep Document Daterを提案する。
論文 参考訳(メタデータ) (2021-06-09T02:12:18Z) - A Survey of Deep Learning Approaches for OCR and Document Understanding [68.65995739708525]
我々は、英語で書かれた文書の文書理解のための様々な手法をレビューする。
文献に現れる方法論を集約し,この領域を探索する研究者の跳躍点として機能させる。
論文 参考訳(メタデータ) (2020-11-27T03:05:59Z) - Document-level Neural Machine Translation with Document Embeddings [82.4684444847092]
この研究は、複数の形式の文書埋め込みの観点から、詳細な文書レベルのコンテキストを活用することに重点を置いている。
提案する文書認識NMTは,大域的および局所的な文書レベルの手がかりをソース端に導入することにより,Transformerベースラインを強化するために実装されている。
論文 参考訳(メタデータ) (2020-09-16T19:43:29Z) - SPECTER: Document-level Representation Learning using Citation-informed
Transformers [51.048515757909215]
SPECTERは、Transformer言語モデルの事前学習に基づいて、科学文書の文書レベルの埋め込みを生成する。
SciDocsは、引用予測から文書分類、レコメンデーションまでの7つの文書レベルのタスクからなる新しい評価ベンチマークである。
論文 参考訳(メタデータ) (2020-04-15T16:05:51Z) - Explaining Relationships Between Scientific Documents [55.23390424044378]
本稿では,2つの学術文書間の関係を自然言語テキストを用いて記述する課題に対処する。
本稿では154K文書から622Kサンプルのデータセットを作成する。
論文 参考訳(メタデータ) (2020-02-02T03:54:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。