FitMe: Deep Photorealistic 3D Morphable Model Avatars
- URL: http://arxiv.org/abs/2305.09641v1
- Date: Tue, 16 May 2023 17:42:45 GMT
- Title: FitMe: Deep Photorealistic 3D Morphable Model Avatars
- Authors: Alexandros Lattas, Stylianos Moschoglou, Stylianos Ploumpis, Baris
Gecer, Jiankang Deng, Stefanos Zafeiriou
- Abstract summary: We introduce FitMe, a facial reflectance model and a differentiable rendering pipeline.
FitMe achieves state-of-the-art reflectance acquisition and identity preservation on single "in-the-wild" facial images.
In contrast with recent implicit avatar reconstructions, FitMe requires only one minute and produces relightable mesh and texture-based avatars.
- Score: 119.03325450951074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce FitMe, a facial reflectance model and a
differentiable rendering optimization pipeline, that can be used to acquire
high-fidelity renderable human avatars from single or multiple images. The
model consists of a multi-modal style-based generator, that captures facial
appearance in terms of diffuse and specular reflectance, and a PCA-based shape
model. We employ a fast differentiable rendering process that can be used in an
optimization pipeline, while also achieving photorealistic facial shading. Our
optimization process accurately captures both the facial reflectance and shape
in high-detail, by exploiting the expressivity of the style-based latent
representation and of our shape model. FitMe achieves state-of-the-art
reflectance acquisition and identity preservation on single "in-the-wild"
facial images, while it produces impressive scan-like results, when given
multiple unconstrained facial images pertaining to the same identity. In
contrast with recent implicit avatar reconstructions, FitMe requires only one
minute and produces relightable mesh and texture-based avatars, that can be
used by end-user applications.
Related papers
- SPARK: Self-supervised Personalized Real-time Monocular Face Capture [6.093606972415841]
Current state of the art approaches have the ability to regress parametric 3D face models in real-time across a wide range of identities.
We propose a method for high-precision 3D face capture taking advantage of a collection of unconstrained videos of a subject as prior information.
arXiv Detail & Related papers (2024-09-12T12:30:04Z) - FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models [79.65289816077629]
We present FitDiff, a diffusion-based 3D facial avatar generative model.
Our model accurately generates relightable facial avatars, utilizing an identity embedding extracted from an "in-the-wild" 2D facial image.
Being the first 3D LDM conditioned on face recognition embeddings, FitDiff reconstructs relightable human avatars, that can be used as-is in common rendering engines.
arXiv Detail & Related papers (2023-12-07T17:35:49Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field.
We show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.
arXiv Detail & Related papers (2022-09-15T15:28:45Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - MoFaNeRF: Morphable Facial Neural Radiance Field [12.443638713719357]
MoFaNeRF is a parametric model that maps free-view images into a vector space coded facial shape, expression and appearance.
By introducing identity-specific modulation and encoder texture, our model synthesizes accurate photometric details.
Our model shows strong ability on multiple applications including image-based fitting, random generation, face rigging, face editing, and novel view.
arXiv Detail & Related papers (2021-12-04T11:25:28Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Personalized Face Modeling for Improved Face Reconstruction and Motion
Retargeting [22.24046752858929]
We propose an end-to-end framework that jointly learns a personalized face model per user and per-frame facial motion parameters.
Specifically, we learn user-specific expression blendshapes and dynamic (expression-specific) albedo maps by predicting personalized corrections.
Experimental results show that our personalization accurately captures fine-grained facial dynamics in a wide range of conditions.
arXiv Detail & Related papers (2020-07-14T01:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.