SPARK: Self-supervised Personalized Real-time Monocular Face Capture
- URL: http://arxiv.org/abs/2409.07984v1
- Date: Thu, 12 Sep 2024 12:30:04 GMT
- Title: SPARK: Self-supervised Personalized Real-time Monocular Face Capture
- Authors: Kelian Baert, Shrisha Bharadwaj, Fabien Castan, Benoit Maujean, Marc Christie, Victoria Abrevaya, Adnane Boukhayma,
- Abstract summary: Current state of the art approaches have the ability to regress parametric 3D face models in real-time across a wide range of identities.
We propose a method for high-precision 3D face capture taking advantage of a collection of unconstrained videos of a subject as prior information.
- Score: 6.093606972415841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feedforward monocular face capture methods seek to reconstruct posed faces from a single image of a person. Current state of the art approaches have the ability to regress parametric 3D face models in real-time across a wide range of identities, lighting conditions and poses by leveraging large image datasets of human faces. These methods however suffer from clear limitations in that the underlying parametric face model only provides a coarse estimation of the face shape, thereby limiting their practical applicability in tasks that require precise 3D reconstruction (aging, face swapping, digital make-up, ...). In this paper, we propose a method for high-precision 3D face capture taking advantage of a collection of unconstrained videos of a subject as prior information. Our proposal builds on a two stage approach. We start with the reconstruction of a detailed 3D face avatar of the person, capturing both precise geometry and appearance from a collection of videos. We then use the encoder from a pre-trained monocular face reconstruction method, substituting its decoder with our personalized model, and proceed with transfer learning on the video collection. Using our pre-estimated image formation model, we obtain a more precise self-supervision objective, enabling improved expression and pose alignment. This results in a trained encoder capable of efficiently regressing pose and expression parameters in real-time from previously unseen images, which combined with our personalized geometry model yields more accurate and high fidelity mesh inference. Through extensive qualitative and quantitative evaluation, we showcase the superiority of our final model as compared to state-of-the-art baselines, and demonstrate its generalization ability to unseen pose, expression and lighting.
Related papers
- Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
We present a robust texture-guided geometric detail recovery approach using only a single in-the-wild facial image.
Our method combines high-quality texture completion with the powerful expressiveness of implicit surfaces.
Our method not only recovers accurate facial details but also decomposes normals, albedos, and shading parts in a self-supervised way.
arXiv Detail & Related papers (2022-03-18T01:42:59Z) - LiP-Flow: Learning Inference-time Priors for Codec Avatars via
Normalizing Flows in Latent Space [90.74976459491303]
We introduce a prior model that is conditioned on the runtime inputs and tie this prior space to the 3D face model via a normalizing flow in the latent space.
A normalizing flow bridges the two representation spaces and transforms latent samples from one domain to another, allowing us to define a latent likelihood objective.
We show that our approach leads to an expressive and effective prior, capturing facial dynamics and subtle expressions better.
arXiv Detail & Related papers (2022-03-15T13:22:57Z) - Thinking the Fusion Strategy of Multi-reference Face Reenactment [4.1509697008011175]
We show that simple extension by using multiple reference images significantly improves generation quality.
We show this by 1) conducting the reconstruction task on publicly available dataset, 2) conducting facial motion transfer on our original dataset which consists of multi-person's head movement video sequences, and 3) using a newly proposed evaluation metric to validate that our method achieves better quantitative results.
arXiv Detail & Related papers (2022-02-22T09:17:26Z) - Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo
Collection [65.92058628082322]
Non-parametric face modeling aims to reconstruct 3D face only from images without shape assumptions.
This paper presents a novel Learning to Aggregate and Personalize framework for unsupervised robust 3D face modeling.
arXiv Detail & Related papers (2021-06-15T03:10:17Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
We present a self-supervised learning approach to learning monocular 3D face reconstruction with a pose guidance network (PGN)
First, we unveil the bottleneck of pose estimation in prior parametric 3D face learning methods, and propose to utilize 3D face landmarks for estimating pose parameters.
With our specially designed PGN, our model can learn from both faces with fully labeled 3D landmarks and unlimited unlabeled in-the-wild face images.
arXiv Detail & Related papers (2020-10-09T06:11:17Z) - Learning Complete 3D Morphable Face Models from Images and Videos [88.34033810328201]
We present the first approach to learn complete 3D models of face identity geometry, albedo and expression just from images and videos.
We show that our learned models better generalize and lead to higher quality image-based reconstructions than existing approaches.
arXiv Detail & Related papers (2020-10-04T20:51:23Z) - Personalized Face Modeling for Improved Face Reconstruction and Motion
Retargeting [22.24046752858929]
We propose an end-to-end framework that jointly learns a personalized face model per user and per-frame facial motion parameters.
Specifically, we learn user-specific expression blendshapes and dynamic (expression-specific) albedo maps by predicting personalized corrections.
Experimental results show that our personalization accurately captures fine-grained facial dynamics in a wide range of conditions.
arXiv Detail & Related papers (2020-07-14T01:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.