論文の概要: Wavelet-based Unsupervised Label-to-Image Translation
- arxiv url: http://arxiv.org/abs/2305.09647v1
- Date: Tue, 16 May 2023 17:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 13:42:17.880561
- Title: Wavelet-based Unsupervised Label-to-Image Translation
- Title(参考訳): ウェーブレットに基づく教師なしラベル対画像翻訳
- Authors: George Eskandar, Mohamed Abdelsamad, Karim Armanious, Shuai Zhang, Bin
Yang
- Abstract要約: 本稿では、自己教師付きセグメンテーション損失と全画像ウェーブレットに基づく識別を併用した、SIS(USIS)のための新しいアン教師付きパラダイムを提案する。
3つの挑戦的なデータセットで方法論を検証し、ペアモデルとアンペアモデルのパフォーマンスギャップを橋渡しする能力を実証する。
- 参考スコア(独自算出の注目度): 9.339522647331334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic Image Synthesis (SIS) is a subclass of image-to-image translation
where a semantic layout is used to generate a photorealistic image.
State-of-the-art conditional Generative Adversarial Networks (GANs) need a huge
amount of paired data to accomplish this task while generic unpaired
image-to-image translation frameworks underperform in comparison, because they
color-code semantic layouts and learn correspondences in appearance instead of
semantic content. Starting from the assumption that a high quality generated
image should be segmented back to its semantic layout, we propose a new
Unsupervised paradigm for SIS (USIS) that makes use of a self-supervised
segmentation loss and whole image wavelet based discrimination. Furthermore, in
order to match the high-frequency distribution of real images, a novel
generator architecture in the wavelet domain is proposed. We test our
methodology on 3 challenging datasets and demonstrate its ability to bridge the
performance gap between paired and unpaired models.
- Abstract(参考訳): セマンティック画像合成(Semantic Image Synthesis, SIS)は、画像から画像への変換のサブクラスである。
state-of-the-art conditional generative adversarial networks (gans)は、このタスクを達成するために膨大な量のペアデータを必要とするが、一般的な非ペア画像から画像への翻訳フレームワークは、意味コンテンツの代わりに色とコードの意味のレイアウトを学習し、外観の対応を学習するため、比較では劣る。
ハイクオリティな生成画像はセマンティクスレイアウトにセグメンテーションするべきだという仮定から始め,自己教師付きセグメンテーション損失と画像ウェーブレットベース全体の識別を用いたsis(unsupervised paradigm for sis)を提案する。
さらに,実画像の高周波分布を整合させるために,ウェーブレット領域における新しい生成器アーキテクチャを提案する。
提案手法を3つの難易度データセットでテストし,ペアモデルとペアモデルのパフォーマンスギャップを橋渡しする能力を示す。
関連論文リスト
- Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - Towards Pragmatic Semantic Image Synthesis for Urban Scenes [4.36080478413575]
合成画像とラベル付きデータセットとラベルなしの実画像付きデータセットが与えられた場合、入力マスクの内容と実際の画像の外観で画像を生成することができるモデルを学ぶことが目的である。
合成画像は, パッチレベルでの高次特徴の違いをペナルティ化することにより, 生成画像の内容のガイドとして活用する。
対象領域のセマンティックな分布に過度に適合する1つの識別器を用いた以前の研究とは対照的に、画像全体の識別器と画像パッチ上のマルチスケール識別器を用いる。
論文 参考訳(メタデータ) (2023-05-16T18:01:12Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - IR-GAN: Image Manipulation with Linguistic Instruction by Increment
Reasoning [110.7118381246156]
Incrment Reasoning Generative Adversarial Network (IR-GAN)は、画像における視覚的インクリメントと命令における意味的インクリメントとの整合性を推論することを目的としている。
まず,単語レベルと命令レベルの命令エンコーダを導入し,履歴関連命令からユーザの意図を意味的インクリメントとして学習する。
第2に、対象画像を生成するために、意味的インクリメントの表現をソースイメージに組み込んで、ソースイメージが補助的参照の役割を担っている。
論文 参考訳(メタデータ) (2022-04-02T07:48:39Z) - USIS: Unsupervised Semantic Image Synthesis [9.613134538472801]
セマンティック画像合成(USIS)のための新しい教師なしパラダイムを提案する。
USISは、自己教師付きセグメンテーションロスを使用して、視覚的に分離可能なセグメンテーションクラスで画像を出力することを学ぶ。
実画像の色とテクスチャの分布を高周波数情報を失うことなく一致させるため,ウェーブレットを用いた識別手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T20:48:41Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - You Only Need Adversarial Supervision for Semantic Image Synthesis [84.83711654797342]
我々は,高品質な結果を得るためには敵対的監督のみを必要とする,新しい簡易ganモデルを提案する。
本モデルによって合成された画像はより多様であり,実画像の色やテクスチャに密接に従っている。
論文 参考訳(メタデータ) (2020-12-08T23:00:48Z) - Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation [1.8275108630751844]
街路シーンのセマンティックセグメンテーションにおけるドメイン適応の問題に対処する。
最先端のアプローチの多くは、結果が入力とセマンティックに一致していることを示しながら、ソースイメージの翻訳に重点を置いている。
画像のセマンティクスを利用して翻訳アルゴリズムを導くことも提案する。
論文 参考訳(メタデータ) (2020-09-02T16:16:50Z) - Controllable Image Synthesis via SegVAE [89.04391680233493]
セマンティックマップは条件付き画像生成の中間表現として一般的に使用される。
本研究では,所望のカテゴリからなるラベルセットを与えられたセマンティックマップの生成を特に対象とする。
提案するフレームワークSegVAEは,条件付き変分オートエンコーダを用いて,セマンティックマップを反復的に合成する。
論文 参考訳(メタデータ) (2020-07-16T15:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。