Quantifying non-Hermiticity using single- and many-particle quantum properties
- URL: http://arxiv.org/abs/2406.13517v1
- Date: Wed, 19 Jun 2024 13:04:47 GMT
- Title: Quantifying non-Hermiticity using single- and many-particle quantum properties
- Authors: Soumik Bandyopadhyay, Philipp Hauke, Sudipto Singha Roy,
- Abstract summary: The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
- Score: 14.37149160708975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts. In this work, we focus on one such aspect, the difference of evolving quantum ensembles under $H_{\mathrm{nh}}$ (right ensemble) versus its Hermitian conjugate, $H_{\mathrm{nh}}^{\dagger}$ (left ensemble). We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties. Such a comparison gives us a scope to measure the extent to which non-Hermiticity gets translated from the Hamiltonian into physically observable properties. We test the formalism in two cases: First, we construct a non-Hermitian Hamiltonian using a set of imperfect Bell states, showing that the non-Hermiticity of the Hamiltonian does not automatically comply with the non-Hermiticity at the level of observables. Second, we study the interacting Hatano--Nelson model with asymmetric hopping as a paradigmatic quantum many-body Hamiltonian. Interestingly, we identify situations where the measures of non-Hermiticity computed for the Hamiltonian, for single-, and for many-particle quantum properties behave distinctly from each other. Thus, different notions of non-Hermiticity can become useful in different physical scenarios. Furthermore, we demonstrate that the measures can mark the model's Parity--Time (PT) symmetry-breaking transition. Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems as well as in preparing resourceful states for quantum technologies.
Related papers
- Entanglement Hamiltonian and effective temperature of non-Hermitian quantum spin ladders [0.0]
We analytically investigate the entanglement Hamiltonian and entanglement energy spectrum of a non-Hermitian spin ladder.
Our findings provide new insights into quantum entanglement in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-25T16:20:24Z) - Non-Hermitian Parent Hamiltonian from Generalized Quantum Covariance
Matrix [0.0]
We provide a systematical and efficient way to construct non-Hermitian Hamiltonian from a single pair of biorthogonal eigenstates.
Our work sheds light on future exploration on non-Hermitian physics.
arXiv Detail & Related papers (2023-07-06T16:27:22Z) - $\mathcal{PT}$-Symmetry breaking in quantum spin chains with exceptional
non-Hermiticities [0.0]
We present a new set of models with non-Hermiticity generated by splitting a Hermitian term into two Jordan-normal form parts.
We find a robust PT threshold that seems insensitive to the size of the quantum spin chain.
arXiv Detail & Related papers (2023-04-20T03:03:58Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The Non-Hermitian quantum mechanics and its canonical structure [7.784991832712813]
The non-Hermitian Schr"odinger equation is re-expressed generally in the form of Hamilton's canonical equation without any approximation.
The conventional difficulties in non-Hermitian quantum mechanics are totally overcome by the reformulation.
arXiv Detail & Related papers (2020-05-21T05:52:53Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.