A Survey on Causal Discovery: Theory and Practice
- URL: http://arxiv.org/abs/2305.10032v1
- Date: Wed, 17 May 2023 08:18:56 GMT
- Title: A Survey on Causal Discovery: Theory and Practice
- Authors: Alessio Zanga, Fabio Stella
- Abstract summary: Causal inference is designed to quantify the underlying relationships that connect a cause to its effect.
In this paper, we explore recent advancements in a unified manner, provide a consistent overview of existing algorithms, report useful tools and data, present real-world applications.
- Score: 2.741266294612776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the laws that govern a phenomenon is the core of scientific
progress. This is especially true when the goal is to model the interplay
between different aspects in a causal fashion. Indeed, causal inference itself
is specifically designed to quantify the underlying relationships that connect
a cause to its effect. Causal discovery is a branch of the broader field of
causality in which causal graphs is recovered from data (whenever possible),
enabling the identification and estimation of causal effects. In this paper, we
explore recent advancements in a unified manner, provide a consistent overview
of existing algorithms developed under different settings, report useful tools
and data, present real-world applications to understand why and how these
methods can be fruitfully exploited.
Related papers
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
Causal emergence theory employs measures of causality to quantify emergence.
Two key problems are addressed: quantifying causal emergence and identifying it in data.
We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning.
arXiv Detail & Related papers (2023-12-28T04:20:46Z) - DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena [59.291745595756346]
We propose a set of visual analytics methods that allow humans to participate in the discovery of causal relations associated with windows of time delay.
Specifically, we leverage a well-established method, logic-based causality, to enable analysts to test the significance of potential causes.
Since an effect can be a cause of other effects, we allow users to aggregate different temporal cause-effect relations found with our method into a visual flow diagram.
arXiv Detail & Related papers (2023-03-12T03:40:21Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASON consists of Topological Causal Discovery and Individual Causal Discovery.
The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes.
The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity.
arXiv Detail & Related papers (2023-02-03T20:17:45Z) - Causal Discovery for Fairness [3.3861246056563616]
We show how different causal discovery approaches may result in different causal models and how even slight differences between causal models can have significant impact on fairness/discrimination conclusions.
Main goal of this study is to highlight the importance of the causal discovery step to appropriately address fairness using causality.
arXiv Detail & Related papers (2022-06-14T08:40:40Z) - Causality, Causal Discovery, and Causal Inference in Structural
Engineering [1.827510863075184]
This paper builds a case for causal discovery and causal inference from a civil and structural engineering perspective.
More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference.
arXiv Detail & Related papers (2022-04-04T14:49:47Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - To do or not to do: finding causal relations in smart homes [2.064612766965483]
This paper introduces a new way to learn causal models from a mixture of experiments on the environment and observational data.
The core of our method is the use of selected interventions, especially our learning takes into account the variables where it is impossible to intervene.
We use our method on a smart home simulation, a use case where knowing causal relations pave the way towards explainable systems.
arXiv Detail & Related papers (2021-05-20T22:36:04Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.