Causal Discovery for Fairness
- URL: http://arxiv.org/abs/2206.06685v1
- Date: Tue, 14 Jun 2022 08:40:40 GMT
- Title: Causal Discovery for Fairness
- Authors: R\=uta Binkyt\.e-Sadauskien\.e, Karima Makhlouf, Carlos Pinz\'on, Sami
Zhioua, Catuscia Palamidessi
- Abstract summary: We show how different causal discovery approaches may result in different causal models and how even slight differences between causal models can have significant impact on fairness/discrimination conclusions.
Main goal of this study is to highlight the importance of the causal discovery step to appropriately address fairness using causality.
- Score: 3.3861246056563616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is crucial to consider the social and ethical consequences of AI and ML
based decisions for the safe and acceptable use of these emerging technologies.
Fairness, in particular, guarantees that the ML decisions do not result in
discrimination against individuals or minorities. Identifying and measuring
reliably fairness/discrimination is better achieved using causality which
considers the causal relation, beyond mere association, between the sensitive
attribute (e.g. gender, race, religion, etc.) and the decision (e.g. job
hiring, loan granting, etc.). The big impediment to the use of causality to
address fairness, however, is the unavailability of the causal model (typically
represented as a causal graph). Existing causal approaches to fairness in the
literature do not address this problem and assume that the causal model is
available. In this paper, we do not make such assumption and we review the
major algorithms to discover causal relations from observable data. This study
focuses on causal discovery and its impact on fairness. In particular, we show
how different causal discovery approaches may result in different causal models
and, most importantly, how even slight differences between causal models can
have significant impact on fairness/discrimination conclusions. These results
are consolidated by empirical analysis using synthetic and standard fairness
benchmark datasets. The main goal of this study is to highlight the importance
of the causal discovery step to appropriately address fairness using causality.
Related papers
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.
We show that enforcing a causal constraint often reduces the disparity between demographic groups.
We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - A Survey on Causal Discovery: Theory and Practice [2.741266294612776]
Causal inference is designed to quantify the underlying relationships that connect a cause to its effect.
In this paper, we explore recent advancements in a unified manner, provide a consistent overview of existing algorithms, report useful tools and data, present real-world applications.
arXiv Detail & Related papers (2023-05-17T08:18:56Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Counterfactual Fairness with Partially Known Causal Graph [85.15766086381352]
This paper proposes a general method to achieve the notion of counterfactual fairness when the true causal graph is unknown.
We find that counterfactual fairness can be achieved as if the true causal graph were fully known, when specific background knowledge is provided.
arXiv Detail & Related papers (2022-05-27T13:40:50Z) - Causality, Causal Discovery, and Causal Inference in Structural
Engineering [1.827510863075184]
This paper builds a case for causal discovery and causal inference from a civil and structural engineering perspective.
More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference.
arXiv Detail & Related papers (2022-04-04T14:49:47Z) - Identifiability of Causal-based Fairness Notions: A State of the Art [4.157415305926584]
Machine learning algorithms can produce biased outcome/prediction, typically, against minorities and under-represented sub-populations.
This paper is a compilation of the major identifiability results which are of particular relevance for machine learning fairness.
arXiv Detail & Related papers (2022-03-11T13:10:32Z) - Promises and Challenges of Causality for Ethical Machine Learning [2.1946447418179664]
We lay out the conditions for appropriate application of causal fairness under the "potential outcomes framework"
We highlight key aspects of causal inference that are often ignored in the causal fairness literature.
We argue that such conceptualization of the intervention is key in evaluating the validity of causal assumptions.
arXiv Detail & Related papers (2022-01-26T00:04:10Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z) - Survey on Causal-based Machine Learning Fairness Notions [4.157415305926584]
This paper examines an exhaustive list of causal-based fairness notions and study their applicability in real-world scenarios.
As the majority of causal-based fairness notions are defined in terms of non-observable quantities, their deployment in practice requires to compute or estimate those quantities.
arXiv Detail & Related papers (2020-10-19T14:28:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.