SHoP: A Deep Learning Framework for Solving High-order Partial
Differential Equations
- URL: http://arxiv.org/abs/2305.10033v1
- Date: Wed, 17 May 2023 08:19:57 GMT
- Title: SHoP: A Deep Learning Framework for Solving High-order Partial
Differential Equations
- Authors: Tingxiong Xiao, Runzhao Yang, Yuxiao Cheng, Jinli Suo, Qionghai Dai
- Abstract summary: We propose a deep learning framework to solve high-order PDEs, named SHoP.
We derive the high-order derivative rule for neural network, to get the derivatives quickly and accurately.
We expand the network into a Taylor series, providing an explicit solution for the PDEs.
- Score: 30.26398911800582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving partial differential equations (PDEs) has been a fundamental problem
in computational science and of wide applications for both scientific and
engineering research. Due to its universal approximation property, neural
network is widely used to approximate the solutions of PDEs. However, existing
works are incapable of solving high-order PDEs due to insufficient calculation
accuracy of higher-order derivatives, and the final network is a black box
without explicit explanation. To address these issues, we propose a deep
learning framework to solve high-order PDEs, named SHoP. Specifically, we
derive the high-order derivative rule for neural network, to get the
derivatives quickly and accurately; moreover, we expand the network into a
Taylor series, providing an explicit solution for the PDEs. We conduct
experimental validations four high-order PDEs with different dimensions,
showing that we can solve high-order PDEs efficiently and accurately.
Related papers
- Physics-informed Neural Networks for Functional Differential Equations: Cylindrical Approximation and Its Convergence Guarantees [7.366405857677226]
We propose the first learning scheme for functional differential equations (FDEs)
FDEs play a fundamental role in physics, mathematics, and optimal control.
numerical approximations of FDEs have been developed, but they often oversimplify the solutions.
arXiv Detail & Related papers (2024-10-23T06:16:35Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Global Convergence of Deep Galerkin and PINNs Methods for Solving
Partial Differential Equations [0.0]
A variety of deep learning methods have been developed to try and solve high-dimensional PDEs by approximating the solution using a neural network.
We prove global convergence for one of the commonly-used deep learning algorithms for solving PDEs, the Deep Galerkin MethodDGM.
arXiv Detail & Related papers (2023-05-10T09:20:11Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Neural Q-learning for solving PDEs [0.0]
We develop a new numerical method for solving elliptic-type PDEs by adapting the Q-learning algorithm in reinforcement learning.
Our "Q-PDE" algorithm is mesh-free and therefore has the potential to overcome the curse of dimensionality.
The numerical performance of the Q-PDE algorithm is studied for several elliptic PDEs.
arXiv Detail & Related papers (2022-03-31T15:52:44Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.