PDE-DKL: PDE-constrained deep kernel learning in high dimensionality
- URL: http://arxiv.org/abs/2501.18258v1
- Date: Thu, 30 Jan 2025 10:39:52 GMT
- Title: PDE-DKL: PDE-constrained deep kernel learning in high dimensionality
- Authors: Weihao Yan, Christoph Brune, Mengwu Guo,
- Abstract summary: We propose a PDE-constrained Deep Kernel Learning (PDE-DKL) framework for PDE-based problems.
We show that PDE-DKL achieves high accuracy with reduced data requirements.
They highlight its potential as a practical, reliable, and scalable solver for complex PDE-based applications in science and engineering.
- Score: 2.1233286062376497
- License:
- Abstract: Many physics-informed machine learning methods for PDE-based problems rely on Gaussian processes (GPs) or neural networks (NNs). However, both face limitations when data are scarce and the dimensionality is high. Although GPs are known for their robust uncertainty quantification in low-dimensional settings, their computational complexity becomes prohibitive as the dimensionality increases. In contrast, while conventional NNs can accommodate high-dimensional input, they often require extensive training data and do not offer uncertainty quantification. To address these challenges, we propose a PDE-constrained Deep Kernel Learning (PDE-DKL) framework that combines DL and GPs under explicit PDE constraints. Specifically, NNs learn a low-dimensional latent representation of the high-dimensional PDE problem, reducing the complexity of the problem. GPs then perform kernel regression subject to the governing PDEs, ensuring accurate solutions and principled uncertainty quantification, even when available data are limited. This synergy unifies the strengths of both NNs and GPs, yielding high accuracy, robust uncertainty estimates, and computational efficiency for high-dimensional PDEs. Numerical experiments demonstrate that PDE-DKL achieves high accuracy with reduced data requirements. They highlight its potential as a practical, reliable, and scalable solver for complex PDE-based applications in science and engineering.
Related papers
- Parameterized Physics-informed Neural Networks for Parameterized PDEs [24.926311700375948]
In this paper, we propose a novel extension, parameterized physics-informed neural networks (PINNs)
PINNs enable modeling the solutions of parameterized partial differential equations (PDEs) via explicitly encoding a latent representation of PDE parameters.
We demonstrate that P$2$INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs.
arXiv Detail & Related papers (2024-08-18T11:58:22Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Tackling the Curse of Dimensionality with Physics-Informed Neural Networks [24.86574584293979]
We develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs.
We demonstrate in various tests that the proposed method can solve many notoriously hard high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-23T12:18:12Z) - SHoP: A Deep Learning Framework for Solving High-order Partial
Differential Equations [30.26398911800582]
We propose a deep learning framework to solve high-order PDEs, named SHoP.
We derive the high-order derivative rule for neural network, to get the derivatives quickly and accurately.
We expand the network into a Taylor series, providing an explicit solution for the PDEs.
arXiv Detail & Related papers (2023-05-17T08:19:57Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering.
We propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system.
In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions.
arXiv Detail & Related papers (2020-09-08T15:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.