A hybrid feature learning approach based on convolutional kernels for
ATM fault prediction using event-log data
- URL: http://arxiv.org/abs/2305.10059v1
- Date: Wed, 17 May 2023 08:55:53 GMT
- Title: A hybrid feature learning approach based on convolutional kernels for
ATM fault prediction using event-log data
- Authors: V\'ictor Manuel Vargas, Riccardo Rosati, C\'esar Herv\'as-Mart\'inez,
Adriano Mancini, Luca Romeo, Pedro Antonio Guti\'errez
- Abstract summary: We present a predictive model based on a convolutional kernel (MiniROCKET and HYDRA) to extract features from event-log data.
The proposed methodology is applied to a significant real-world collected dataset.
The model was integrated into a container-based decision support system to support operators in the timely maintenance of ATMs.
- Score: 5.859431341476405
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predictive Maintenance (PdM) methods aim to facilitate the scheduling of
maintenance work before equipment failure. In this context, detecting early
faults in automated teller machines (ATMs) has become increasingly important
since these machines are susceptible to various types of unpredictable
failures. ATMs track execution status by generating massive event-log data that
collect system messages unrelated to the failure event. Predicting machine
failure based on event logs poses additional challenges, mainly in extracting
features that might represent sequences of events indicating impending
failures. Accordingly, feature learning approaches are currently being used in
PdM, where informative features are learned automatically from minimally
processed sensor data. However, a gap remains to be seen on how these
approaches can be exploited for deriving relevant features from event-log-based
data. To fill this gap, we present a predictive model based on a convolutional
kernel (MiniROCKET and HYDRA) to extract features from the original event-log
data and a linear classifier to classify the sample based on the learned
features. The proposed methodology is applied to a significant real-world
collected dataset. Experimental results demonstrated how one of the proposed
convolutional kernels (i.e. HYDRA) exhibited the best classification
performance (accuracy of 0.759 and AUC of 0.693). In addition, statistical
analysis revealed that the HYDRA and MiniROCKET models significantly overcome
one of the established state-of-the-art approaches in time series
classification (InceptionTime), and three non-temporal ML methods from the
literature. The predictive model was integrated into a container-based decision
support system to support operators in the timely maintenance of ATMs.
Related papers
- Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
We present a novel application of explainable AI (XAI) for root-causing performance degradation in machine learning models.
A single feature corruption can cause cascading feature, label and concept drifts.
We have successfully applied this technique to improve the reliability of models used in personalized advertising.
arXiv Detail & Related papers (2024-03-04T19:38:50Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - DynamoPMU: A Physics Informed Anomaly Detection and Prediction
Methodology using non-linear dynamics from $\mu$PMU Measurement Data [0.0]
We develop a physics dynamics-based approach to detect anomalies in the $mu$PMU streaming data and simultaneously predict the events using governing equations.
We demonstrate the efficacy of our proposed framework through analysis of real $mu$PMU data taken from the LBNL distribution grid.
arXiv Detail & Related papers (2023-03-31T19:32:24Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
We study robust event classification using imperfect real-world phasor measurement unit (PMU) data.
We develop a novel machine learning framework for training robust event classifiers.
arXiv Detail & Related papers (2021-10-19T17:41:43Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - FairCanary: Rapid Continuous Explainable Fairness [8.362098382773265]
We present Quantile Demographic Drift (QDD), a novel model bias quantification metric.
QDD is ideal for continuous monitoring scenarios, does not suffer from the statistical limitations of conventional threshold-based bias metrics.
We incorporate QDD into a continuous model monitoring system, called FairCanary, that reuses existing explanations computed for each individual prediction.
arXiv Detail & Related papers (2021-06-13T17:47:44Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Data-Driven Failure Prediction in Brittle Materials: A Phase-Field Based
Machine Learning Framework [1.3858051019755282]
Failure in brittle materials led by micro- to macro-cracks under repetitive or increasing loads is often catastrophic.
We develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear elastic and isotropic phase-field model.
Results indicate that the proposed framework is capable of predicting failure with acceptable accuracy even in the presence of high noise levels.
arXiv Detail & Related papers (2020-03-24T17:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.