Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network
- URL: http://arxiv.org/abs/2305.10110v3
- Date: Wed, 1 May 2024 21:54:24 GMT
- Title: Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network
- Authors: Wenzhao Zhao, Barbara D. Wichtmann, Steffen Albert, Angelika Maurer, Frank G. Zöllner, Ulrike Attenberger, Jürgen Hesser,
- Abstract summary: Group-equivariant convolutional neural networks (G-CNN) heavily rely on parameter sharing to increase CNN's data efficiency and performance.
We propose a non- parameter-sharing approach for group equivariant neural networks.
The proposed methods adaptively aggregate a diverse range of filters by a weighted sum of decomposedally augmented filters.
- Score: 0.36122488107441414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group-equivariant convolutional neural networks (G-CNN) heavily rely on parameter sharing to increase CNN's data efficiency and performance. However, the parameter-sharing strategy greatly increases the computational burden for each added parameter, which hampers its application to deep neural network models. In this paper, we address these problems by proposing a non-parameter-sharing approach for group equivariant neural networks. The proposed methods adaptively aggregate a diverse range of filters by a weighted sum of stochastically augmented decomposed filters. We give theoretical proof about how the continuous group convolution can be approximated by our methods. Our method applies to both continuous and discrete groups, where the augmentation is implemented using Monte Carlo sampling and bootstrap resampling, respectively. We demonstrate that our methods serve as an efficient extension of standard CNN. Experiments on group equivariance tests show how our methods can achieve superior performance to parameter-sharing group equivariant networks. Experiments on image classification and image denoising tasks show that in certain scenarios, with a suitable set of filter bases, our method helps improve the performance of standard CNNs and build efficient lightweight image denoising networks. The code will be available at https://github.com/ZhaoWenzhao/MCG_CNN.
Related papers
- Group Orthogonalization Regularization For Vision Models Adaptation and
Robustness [31.43307762723943]
We propose a computationally efficient regularization technique that encourages orthonormality between groups of filters within the same layer.
Our experiments show that when incorporated into recent adaptation methods for diffusion models and vision transformers (ViTs), this regularization improves performance on downstream tasks.
arXiv Detail & Related papers (2023-06-16T17:53:16Z) - Sorted Convolutional Network for Achieving Continuous Rotational
Invariance [56.42518353373004]
We propose a Sorting Convolution (SC) inspired by some hand-crafted features of texture images.
SC achieves continuous rotational invariance without requiring additional learnable parameters or data augmentation.
Our results demonstrate that SC achieves the best performance in the aforementioned tasks.
arXiv Detail & Related papers (2023-05-23T18:37:07Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - Batch Normalization Tells You Which Filter is Important [49.903610684578716]
We propose a simple yet effective filter pruning method by evaluating the importance of each filter based on the BN parameters of pre-trained CNNs.
The experimental results on CIFAR-10 and ImageNet demonstrate that the proposed method can achieve outstanding performance.
arXiv Detail & Related papers (2021-12-02T12:04:59Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Meta-learning representations for clustering with infinite Gaussian
mixture models [39.56814839510978]
We propose a meta-learning method that train neural networks for obtaining representations such that clustering performance improves.
The proposed method can cluster unseen unlabeled data using knowledge meta-learned with labeled data that are different from the unlabeled data.
arXiv Detail & Related papers (2021-03-01T02:05:31Z) - Self-grouping Convolutional Neural Networks [30.732298624941738]
We propose a novel method of designing self-grouping convolutional neural networks, called SG-CNN.
For each filter, we first evaluate the importance value of their input channels to identify the importance vectors.
Using the resulting emphdata-dependent centroids, we prune the less important connections, which implicitly minimizes the accuracy loss of the pruning.
arXiv Detail & Related papers (2020-09-29T06:24:32Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.