論文の概要: An Ensemble Deep Learning Approach for COVID-19 Severity Prediction
Using Chest CT Scans
- arxiv url: http://arxiv.org/abs/2305.10115v1
- Date: Wed, 17 May 2023 10:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-18 16:25:34.502822
- Title: An Ensemble Deep Learning Approach for COVID-19 Severity Prediction
Using Chest CT Scans
- Title(参考訳): 胸部CTスキャンを用いた新型コロナウイルス重症度予測のための深層学習手法
- Authors: Sidra Aleem, Mayug Maniparambil, Suzanne Little, Noel O'Connor and
Kevin McGuinness
- Abstract要約: 胸部CTによる重症度予測について検討した。
我々は複数のニューラルネットワークを組み込んで予測を改善するアンサンブル深層学習モデルを開発した。
- 参考スコア(独自算出の注目度): 8.512389316218943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest X-rays have been widely used for COVID-19 screening; however, 3D
computed tomography (CT) is a more effective modality. We present our findings
on COVID-19 severity prediction from chest CT scans using the STOIC dataset. We
developed an ensemble deep learning based model that incorporates multiple
neural networks to improve predictions. To address data imbalance, we used
slicing functions and data augmentation. We further improved performance using
test time data augmentation. Our approach which employs a simple yet effective
ensemble of deep learning-based models with strong test time augmentations,
achieved results comparable to more complex methods and secured the fourth
position in the STOIC2021 COVID-19 AI Challenge. Our code is available on
online: at: https://github.com/aleemsidra/stoic2021- baseline-finalphase-main.
- Abstract(参考訳): 胸部X線は、新型コロナウイルススクリーニングに広く用いられているが、CT(3D Computed Tomography)はより効果的なモダリティである。
STOICデータセットを用いた胸部CTによる重症度予測について検討した。
我々は複数のニューラルネットワークを組み込んで予測を改善するアンサンブル深層学習モデルを開発した。
データの不均衡に対処するために、スライシング機能とデータ拡張を用いた。
さらに,テスト時間データ拡張による性能改善を行った。
強力なテスト時間拡張を備えた、単純かつ効果的なディープラーニングベースのモデルを用いたアプローチは、より複雑な方法に匹敵する結果を達成し、stic2021のcovid-19 aiチャレンジで4番目のポジションを確保した。
at: https://github.com/aleemsidra/stoic2021-baseline-finalphase-main.com/stoic2021- コードはオンラインで利用可能です。
関連論文リスト
- Simple 2D Convolutional Neural Network-based Approach for COVID-19 Detection [8.215897530386343]
本研究では,肺CT画像解析におけるディープラーニング技術の利用について検討した。
我々は,CTスキャンに適した高度な空間スライス特徴学習(SSFL++)フレームワークを提案する。
本研究の目的は,CTスキャン全体のアウト・オブ・ディストリビューション(OOD)データをフィルタリングし,データ冗長性を70%削減して解析に不可欠な空間スライス特徴を選択することである。
論文 参考訳(メタデータ) (2024-03-17T14:34:51Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis [22.54540093657541]
コロナウイルス感染症2019(COVID-19)は、2019年12月の報告以来、世界中で急速に拡大している。
近年、ディープラーニングに基づくアプローチは、無数の画像認識タスクにおいて顕著なパフォーマンスを示している。
本報告では, 疑似病変の発生と回復に基づく自己指導型事前訓練法を提案する。
論文 参考訳(メタデータ) (2021-06-23T11:21:30Z) - COVID-19 detection from scarce chest x-ray image data using deep
learning [0.0]
現在の新型コロナウイルスのパンデミックでは、感染した患者を迅速かつ正確に検査する必要がある。
胸部x線画像で訓練されたディープラーニングモデルを使うことは、新型コロナウイルス患者のスクリーニングに効果的な方法となる。
少数の学習は、少ないデータ量で目的を学ぶことを目的とした機械学習のサブフィールドです。
論文 参考訳(メタデータ) (2021-02-11T22:06:03Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
クラウドソースのオーディオサンプルからエンドツーエンドのディープラーニングを使用してCOVID-19を診断する最初の試みを実証します。
本研究では, 人工深層ニューラルネットワークを用いて, 人工呼吸器から新型コロナを診断する新しいモデル戦略を提案する。
論文 参考訳(メタデータ) (2021-01-07T01:13:00Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。