Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques
- URL: http://arxiv.org/abs/2305.10118v2
- Date: Tue, 6 Jun 2023 16:13:53 GMT
- Title: Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques
- Authors: Andrea Lampis, Eugenio Lomurno, Matteo Matteucci
- Abstract summary: generative models have emerged as a promising solution for generating synthetic datasets that can replace or augment real-world data.
We propose three novel post-processing techniques to improve the quality and diversity of the synthetic dataset.
Experiments show that Gap Filler (GaFi) effectively reduces the gap with real-accuracy scores to an error of 2.03%, 1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively.
- Score: 7.967995669387532
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Acquiring and annotating suitable datasets for training deep learning models
is challenging. This often results in tedious and time-consuming efforts that
can hinder research progress. However, generative models have emerged as a
promising solution for generating synthetic datasets that can replace or
augment real-world data. Despite this, the effectiveness of synthetic data is
limited by their inability to fully capture the complexity and diversity of
real-world data. To address this issue, we explore the use of Generative
Adversarial Networks to generate synthetic datasets for training classifiers
that are subsequently evaluated on real-world images. To improve the quality
and diversity of the synthetic dataset, we propose three novel post-processing
techniques: Dynamic Sample Filtering, Dynamic Dataset Recycle, and Expansion
Trick. In addition, we introduce a pipeline called Gap Filler (GaFi), which
applies these techniques in an optimal and coordinated manner to maximise
classification accuracy on real-world data. Our experiments show that GaFi
effectively reduces the gap with real-accuracy scores to an error of 2.03%,
1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets,
respectively. These results represent a new state of the art in Classification
Accuracy Score and highlight the effectiveness of post-processing techniques in
improving the quality of synthetic datasets.
Related papers
- Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification [7.357494019212501]
We propose efficient weighted-loss approaches to align synthetic data with real-world distribution.
We empirically assessed the effectiveness of our method on multiple text classification tasks.
arXiv Detail & Related papers (2024-10-28T20:53:49Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Semi-synthesis: A fast way to produce effective datasets for stereo
matching [16.602343511350252]
Close-to-real-scene texture rendering is a key factor to boost up stereo matching performance.
We propose semi-synthetic, an effective and fast way to synthesize large amount of data with close-to-real-scene texture.
With further fine-tuning on the real dataset, we also achieve SOTA performance on Middlebury and competitive results on KITTI and ETH3D datasets.
arXiv Detail & Related papers (2021-01-26T14:34:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.