Less is More: Adaptive Coverage for Synthetic Training Data
- URL: http://arxiv.org/abs/2504.14508v1
- Date: Sun, 20 Apr 2025 06:45:16 GMT
- Title: Less is More: Adaptive Coverage for Synthetic Training Data
- Authors: Sasan Tavakkol, Max Springer, Mohammadhossein Bateni, Neslihan Bulut, Vincent Cohen-Addad, MohammadTaghi Hajiaghayi,
- Abstract summary: This study introduces a novel sampling algorithm, based on the maximum coverage problem, to select a representative subset from a synthetically generated dataset.<n>Our results demonstrate that training a classifier on this contextually sampled subset achieves superior performance compared to training on the entire dataset.
- Score: 20.136698279893857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic training data generation with Large Language Models (LLMs) like Google's Gemma and OpenAI's GPT offer a promising solution to the challenge of obtaining large, labeled datasets for training classifiers. When rapid model deployment is critical, such as in classifying emerging social media trends or combating new forms of online abuse tied to current events, the ability to generate training data is invaluable. While prior research has examined the comparability of synthetic data to human-labeled data, this study introduces a novel sampling algorithm, based on the maximum coverage problem, to select a representative subset from a synthetically generated dataset. Our results demonstrate that training a classifier on this contextually sampled subset achieves superior performance compared to training on the entire dataset. This "less is more" approach not only improves accuracy but also reduces the volume of data required, leading to potentially more efficient model fine-tuning.
Related papers
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.<n>Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Synthetic ECG Generation for Data Augmentation and Transfer Learning in Arrhythmia Classification [1.7614607439356635]
We explore the usefulness of synthetic data generated with different generative models from Deep Learning.
We investigate the effects of transfer learning, by fine-tuning a synthetically pre-trained model and then adding increasing proportions of real data.
arXiv Detail & Related papers (2024-11-27T15:46:34Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification [7.357494019212501]
We propose efficient weighted-loss approaches to align synthetic data with real-world distribution.<n>We empirically assessed the effectiveness of our method on multiple text classification tasks.
arXiv Detail & Related papers (2024-10-28T20:53:49Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
We introduce an Expansive Synthesis model generating large-scale, information-rich datasets from minimal samples.
An autoencoder with self-attention layers and optimal transport refines distributional consistency.
Results show comparable performance, demonstrating the model's potential to augment training data effectively.
arXiv Detail & Related papers (2024-06-25T02:59:02Z) - Online Data Augmentation for Forecasting with Deep Learning [0.33554367023486936]
This work introduces an online data augmentation framework that generates synthetic samples during the training of neural networks.<n>We maintain a balanced representation between real and synthetic data throughout the training process.<n>Experiments suggest that online data augmentation leads to better forecasting performance compared to offline data augmentation or no augmentation approaches.
arXiv Detail & Related papers (2024-04-25T17:16:13Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - A Data-Centric Approach for Training Deep Neural Networks with Less Data [1.9014535120129343]
This paper summarizes our winning submission to the "Data-Centric AI" competition.
We discuss some of the challenges that arise while training with a small dataset.
We propose a GAN-based solution for synthesizing new data points.
arXiv Detail & Related papers (2021-10-07T16:41:52Z) - Towards Synthetic Multivariate Time Series Generation for Flare
Forecasting [5.098461305284216]
One of the limiting factors in training data-driven, rare-event prediction algorithms is the scarcity of the events of interest.
In this study, we explore the usefulness of the conditional generative adversarial network (CGAN) as a means to perform data-informed oversampling.
arXiv Detail & Related papers (2021-05-16T22:23:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.