Efficient Error Certification for Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2305.10157v2
- Date: Wed, 29 May 2024 11:08:06 GMT
- Title: Efficient Error Certification for Physics-Informed Neural Networks
- Authors: Francisco Eiras, Adel Bibi, Rudy Bunel, Krishnamurthy Dj Dvijotham, Philip Torr, M. Pawan Kumar,
- Abstract summary: We introduce $partial$-CROWN: a general, efficient and scalable post-training framework to bound PINN residual errors.
We demonstrate its effectiveness in obtaining certificates tight by applying it to two classically studied PINNs and two more challenging ones with real-world applications.
- Score: 25.712851771991218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work provides promising evidence that Physics-Informed Neural Networks (PINN) can efficiently solve partial differential equations (PDE). However, previous works have failed to provide guarantees on the worst-case residual error of a PINN across the spatio-temporal domain - a measure akin to the tolerance of numerical solvers - focusing instead on point-wise comparisons between their solution and the ones obtained by a solver on a set of inputs. In real-world applications, one cannot consider tests on a finite set of points to be sufficient grounds for deployment, as the performance could be substantially worse on a different set. To alleviate this issue, we establish guaranteed error-based conditions for PINNs over their continuous applicability domain. To verify the extent to which they hold, we introduce $\partial$-CROWN: a general, efficient and scalable post-training framework to bound PINN residual errors. We demonstrate its effectiveness in obtaining tight certificates by applying it to two classically studied PINNs - Burgers' and Schr\"odinger's equations -, and two more challenging ones with real-world applications - the Allan-Cahn and Diffusion-Sorption equations.
Related papers
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
Physics-informed neural networks (PINNs) have earned high expectations in solving partial differential equations (PDEs)
Previous research observed the propagation failure phenomenon of PINNs.
This paper provides the first formal and in-depth study of propagation failure and its root cause.
arXiv Detail & Related papers (2025-02-02T13:56:38Z) - SetPINNs: Set-based Physics-informed Neural Networks [31.193471532024407]
We introduce SetPINNs, a framework that effectively captures local dependencies.<n>We partition the domain into sets to model local dependencies while simultaneously enforcing physical laws.<n>Experiments on synthetic and real-world tasks show improved accuracy, efficiency, and robustness.
arXiv Detail & Related papers (2024-09-30T11:41:58Z) - DiffGrad for Physics-Informed Neural Networks [0.0]
Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adamprop.
This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs.
arXiv Detail & Related papers (2024-09-05T04:39:35Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Failure-informed adaptive sampling for PINNs [5.723850818203907]
Physics-informed neural networks (PINNs) have emerged as an effective technique for solving PDEs in a wide range of domains.
Recent research has demonstrated, however, that the performance of PINNs can vary dramatically with different sampling procedures.
We present an adaptive approach termed failure-informed PINNs, which is inspired by the viewpoint of reliability analysis.
arXiv Detail & Related papers (2022-10-01T13:34:41Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - CAN-PINN: A Fast Physics-Informed Neural Network Based on
Coupled-Automatic-Numerical Differentiation Method [17.04611875126544]
Novel physics-informed neural network (PINN) methods for coupling neighboring support points and automatic differentiation (AD) through Taylor series expansion are proposed.
The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs.
arXiv Detail & Related papers (2021-10-29T14:52:46Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
Physics-informed Neural Networks (PINNs) have been shown to be effective in solving partial differential equations.
This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dynamically propagating these errors over the domain of the solution of the PDE.
arXiv Detail & Related papers (2021-10-26T00:10:57Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.